精英家教网 > 高中数学 > 题目详情
3.下列四个命题中,真命题是(  )
A.和两条异面直线都相交的两条直线是异面直线
B.和两条异面直线都相交于不同点的两条直线是异面直线
C.和两条异面直线都垂直的直线是异面直线的公垂线
D.若a、b是异面直线,b、c是异面直线,则a、c是异面直线

分析 可以在正方体中考虑线线,线面的位置关系,找到反例即可.
C中利用公垂线的定义可进行判断.

解答 A中和两条异面直线都相交的两条直线可以是异面直线,也可以是相交直线,故错误;
B中和两条异面直线都相交于不同点的两条直线是异面直线是正确的;
C中和两条异面直线都垂直且相交的直线是异面直线的公垂线,故错误;
D中若a、b是异面直线,b、c是异面直线,则a、c是异面直线,也可以是平行线,故错误.
故选B.

点评 考查了空间线线,线面的位置关系,属于基础题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.实数x,y满足不等式组$\left\{\begin{array}{l}{x+3y-2≥0}\\{x-3y+4≥0}\\{x-y-2≤0}\end{array}\right.$,则z=(x-1)2+(y-5)2的取值范围为(  )
A.[$\sqrt{10}$,20]B.[$\sqrt{10}$,26]C.[10,20]D.[10,26]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若双曲线$\frac{x^2}{4}-\frac{y^2}{9}$=1上一点P到左焦点的距离是3,则点P到右焦点的距离为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.有下列命题:
①在函数y=cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)的图象中,相邻两个对称中心的距离为π;
②命题:“若a=0,则ab=0”的否命题是“若a=0,则ab≠0”;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分条件;
④已知命题p:对任意的x∈R,都有sinx≤1,则¬p是:存在x0∈R,使得sinx0>1;
⑤命题“若0<a<1,则loga(a+1)>loga(1+$\frac{1}{a}$)”是真命题;
⑥在△ABC中,若3sinA+4cosB=6,4sinB+3cosA=1,则角C等于30°或150°.
其中所有真命题的序号是④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.M是椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1上一点,F1,F2是椭圆的左、右焦点,I是△MF1F2的内心,延长MI交F1F2于N,则$\frac{|MI|}{|IN|}$等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow a=({-2,1}),\overrightarrow b=(1,m)$平行,则m=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设α:x=1且y=2,β:x+y=3,α是β成立的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若(1-3x)7展开式的第4项为280,则$\lim_{n→∞}({x+{x^2}+…+{x^n}})$=$-\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.
(1)若f(1)≤8,求实数a的取值范围;
(2)设a=1,对任意的x1,x2∈(-1,0),关于m的不等式|$\frac{{x}_{1}}{f({x}_{1})}$-g(x2)|<m恒成立,求实数m的取值范围;
(3)设H1(x)=max{f(x,g(x)},H2(x)=min{f(x),g(x)},其中max{p,q}表示p,q中的较大者,min{p,q}表示p,q中的较小者;记H1(x)的最小值为A,H2(x)的最大值为B,求A-B的值.

查看答案和解析>>

同步练习册答案