精英家教网 > 高中数学 > 题目详情
11.若对任意实数x∈R,不等式$x_{\;}^2+m{x_{\;}}+2m-3≥0$恒成立,则实数m的取值范围是(  )
A.[2,6]B.[-6,-2]C.(2,6)D.(-6,-2)

分析 依题意知,m2-4(2m-3)=m2-8m+12≤0,解之即可.

解答 解:对任意实数x∈R,不等式$x_{\;}^2+m{x_{\;}}+2m-3≥0$恒成立,
则m2-4(2m-3)=m2-8m+12≤0,
解得:2≤m≤6,
即实数m的取值范围是[2,6].
故选:A.

点评 本题考查函数恒成立问题,考查二次函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知集合A={1,2,6},B={2,3,6},则A∪B={1,2,3,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在数列{an},{bn}中,已知a1=2,b1=4,且-an,bn,an+1成等差数列,-bn,an,bn+1也成等差数列.
(Ⅰ)求证:数列{an+bn}和{an-bn}都是等比数列,并求数列{an}的通项公式;
(Ⅱ)若cn=(an-3n)log3[an-(-1)n],求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:?x∈R,x2+2x-a>0.若p为真命题,则实数a的取值范围是(  )
A.a>-1B.a<-1C.a≥-1D.a≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设F为抛物线C:y2=3x的焦点,过F作直线交抛物线C于A、B两点,O为坐标原点,则△OAB面积的最小值为$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$cos(-\frac{19π}{6})$的值为.(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知cos($\frac{π}{12}$-θ)=$\frac{1}{3}$,则sin(2θ+$\frac{π}{3}$)=$-\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现,但生猪养殖成本逐月递增.下表是今年前四个月的统计情况:
月份1月份2月份3月份4月份
收购价格(元/斤)6765
养殖成本(元/斤)344.65
现打算从以下两个函数模型:
①y=Asin(ωx+φ)+B,(A>0,ω>0,-π<φ<π),
②y=log2(x+a)+b
中选择适当的函数模型,分别来拟合今年生猪收购价格(元/斤)与相应月份之间的函数关系、养殖成本(元/斤)与相应月份之间的函数关系.
(1)请你选择适当的函数模型,分别求出这两个函数解析式;
(2)按照你选定的函数模型,帮助该部门分析一下,今年该地区生猪养殖户在8月和9月有没有可能亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与圆(x-$\sqrt{2}$)2+y2=1相切,则此双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案