【题目】某厂生产和两种产品,按计划每天生产各不得少于10吨,已知生产产品吨需要用煤9吨,电4度,劳动力3个(按工作日计算).生产产品1吨需要用煤4吨,电5度,劳动力10个,如果产品每吨价值7万元, 产品每吨价值12万元,而且每天用煤不超过300吨,用电不超过200度,劳动力最多只有300个,每天应安排生产两种产品各多少才是合理的?
【答案】产品20吨和产品吨是合理的.
【解析】试题分析:设每天生产产品吨和产品吨,根据用煤量、用电量、劳动力的限制列出关于, 的约束条件,画出可行域,平移目标函数,即可找到最优解,代入目标函数即可得结果.
试题解析:设每天生产产品吨和产品吨,则创造的价值为 (万元),由已知列出的约束条件为
,问题就成为在此二元一次不等式组限制的范围(区域)内寻找,使目标函数取最大值的问题,画出可行域如图.
∵,∴当直线经过直线与的交点时, 最大,解方程组得,∴点坐标为,∴当时, 取最大值.
答:每天生产产品20吨和产品吨是合理的.
【方法点晴】本题主要考查线性规划的应用、利用可行域求目标函数的最值,属中档题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.
科目:高中数学 来源: 题型:
【题目】已知函数 (为实常数).
(1)若, ,求的单调区间;
(2)若,且,求函数在上的最小值及相应的值;
(3)设,若存在,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+a|+|x-2|.
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在研究某种药物对“H1N11”病毒的治疗效果时,进行动物试验,得到以下数据,对146只动物服用药物,其中101只动物存活,45只动物死亡;对照组144只动物进行常规治疗,其中124只动物存活,20只动物死亡.
(1)根据以上数据建立一个列联表;
(2)试问该种药物对治疗“H1N1”病毒是否有效?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, ,函数的图象在点处的切线平行于轴.
(1)求的值;
(2)求函数的极小值;
(3)设斜率为的直线与函数的图象交于两点, , ,证明: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com