精英家教网 > 高中数学 > 题目详情

【题目】某厂生产两种产品,按计划每天生产各不得少于10吨,已知生产产品吨需要用煤9吨,电4度,劳动力3个(按工作日计算).生产产品1吨需要用煤4吨,电5度,劳动力10个,如果产品每吨价值7万元, 产品每吨价值12万元,而且每天用煤不超过300吨,用电不超过200度,劳动力最多只有300个,每天应安排生产两种产品各多少才是合理的?

【答案】产品20吨和产品吨是合理的.

【解析】试题分析:设每天生产产品吨和产品吨,根据用煤量、用电量、劳动力的限制列出关于, 的约束条件,画出可行域,平移目标函数,即可找到最优解,代入目标函数即可得结果.

试题解析:设每天生产产品吨和产品吨,则创造的价值为 (万元),由已知列出的约束条件为

,问题就成为在此二元一次不等式组限制的范围(区域)内寻找,使目标函数取最大值的问题,画出可行域如图.

,∴当直线经过直线的交点时, 最大,解方程组,∴点坐标为,∴当时, 取最大值.

答:每天生产产品20吨和产品吨是合理的.

【方法点晴】本题主要考查线性规划的应用、利用可行域求目标函数的最值,属中档题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中.

(1)当时,求曲线在点处的切线方程;

(2)讨论函数的单调性;

(3)当,且时证明不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (为实常数).

(1)若 ,求的单调区间;

(2)若,且,求函数上的最小值及相应的值;

(3)设,若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)求函数的单调区间;

(2)若函数上恰有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),其中是自然对数的底数.

(1)若的两个根分别为,且满足,求的值;

(2)当时,讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线

(1)求曲线在点处的切线方程;

(2)过原点作曲线的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|xa||x2|.

1)当a=-3时,求不等式fx≥3的解集;

2)若fx≤|x4|的解集包含[12],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在研究某种药物对“H1N11”病毒的治疗效果时,进行动物试验,得到以下数据,对146只动物服用药物,其中101只动物存活,45只动物死亡;对照组144只动物进行常规治疗,其中124只动物存活,20只动物死亡.

(1)根据以上数据建立一个列联表;

(2)试问该种药物对治疗“H1N1”病毒是否有效?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,函数的图象在点处的切线平行于轴.

(1)求的值;

(2)求函数的极小值;

(3)设斜率为的直线与函数的图象交于两点 ,证明: .

查看答案和解析>>

同步练习册答案