精英家教网 > 高中数学 > 题目详情
9.设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩B={2,3}.

分析 由A与B,找出两集合的交集即可.

解答 解:∵全集U=R,A={1,2,3,4},B={x|2≤x≤3},
∴A∩B={2,3},
故答案为:{2,3}

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,已知正四棱锥V-ABCD中,AC与BD交于点M,VM是棱锥的高,若AC=2$\sqrt{2}$,VC=$\sqrt{3}$.
(1)求正四棱锥V-ABCD的体积.
(2)求正四棱锥V-ABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a∈R,直线l1:x+2y=a+2和直线l2:2x-y=2a-1分别与圆E:(x-a)2+(y-1)2=4相交于A、C和B、D,则四边形ABCD的面积为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系中,第一象限内的动点P(x,y)满足:
①与点A(1,1)、点B(-1,-1)连线斜率互为相反数;
②x+y<$\frac{5}{2}$.
(1)求动点P的轨迹C1的方程;
(2)若存在直线m与C1和椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)均相切于同一点,求椭圆C2离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.集合A={x|9x+p•3x+q=0,x∈R},B={x|q•9x+p•3x+1=0,x∈R},且实数pq≠0
(1)证明:若x0∈A,则-x0∈B;
(2)是否存在实数p,q满足A∩B≠∅且A∩CRB={1}?若存在,求出p,q的值,不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足${a_{n+1}}=\frac{4}{{4-{a_n}}}(n∈{N^*}),{a_1}=0$,记数列{an}的前n项和为Sn,cn=Sn-2n+2ln(n+1)
(1)令${b_n}=\frac{2}{{2-{a_n}}}$,证明:对任意正整数n,|sin(bnθ)|≤bn|sinθ|
(2)证明数列{cn}是递减数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.要从高一(5)班50名学生中随机抽出5人参加一项活动,假设从0开始编号,用随机数表法进行抽样,从下表的第一个数1开始向右读数,则第5人的号码是(  )
随机数表:16 22 77 94 39  49 54 43 54 82  17 37 93 23 78  87 35 20 96 43.
A.49B.54C.44D.43

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知0<a<b,且a+b=1,则下列不等式中,正确的是(  )
A.log2a>0B.2a-b$<\frac{1}{2}$C.log2a+log2b<-2D.2${\;}^{\frac{b}{a}+\frac{a}{b}}$$<\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一次函数f(x)的图象过点A(0,3)和B(4,1),则f(x)的单调性为(  )
A.增函数B.减函数C.先减后增D.先增后减

查看答案和解析>>

同步练习册答案