精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga
1-mxx-1
是奇函数.(a>0,且a≠1)
(1)求m的值;
(2)判断f(x)在区间(1,+∞)上的单调性并加以证明.
(3)当a>1,x∈(r,a-2)时,f(x)的值域是(1,+∞),求a与r的值.
分析:(1)由函数f(x)是奇函数,可得出f(x)=-f(x),由此方程恒成立,可得出参数m的方程,解出参数的值即可;
(2)由于本题中参数a的取值范围未定,故应对它的取值范围分类讨论,判断函数的单调性再进行证明;
(3)由题设x∈(r,a-2)时,f(x)的值的范围恰为(1,+∞),可根据函数的单调性确定出两个参数a及r的方程,解方程得出两个参数的值.
解答:解:(1)由f(x)=loga
1-mx
x-1
是奇函数得
f(-x)=-f(x)
即loga 
1-mx
x-1
+loga 
mx+1
-x-1
=0
log a 
1-m2x2
1-x2
=0即m=-1(m=1舍去)
(2)由(1)得,f(x)=loga 
x+1
x-1
(a>0,a≠1),
任取x1,x2∈(1,+∞),且x1<x2,令t(x)=
x+1
x-1

则t(x1)-t(x2)=
x1+1
x1-1
-
x2+1
x2-1
=
2(x2-x1)
(x1-1)(x2-1)

∵x1>1,x2>1,x1<x2
∴x1-1>0,x2-1>0,x2-x1>0
∴t(x1)>t(x2
∴当a>1时,loga 
x1+1
x1-1
>loga
x2+1
x2-1

f(x)在(1,+∞)上是减函数;当0<a<1时,f(x)在(1,+∞)上是增函数.
(3)因为x∈(r,a-2),定义域D=(-∞,-1)∪(1,+∞),
1°当r≥1时,则1≤r<a-2,即a>3,…(14分)
所以f(x)在(r,a-2)上为减函数,值域恰为(1,+∞),所以f(a-2)=1,…(15分)
即loga
1+a-2
a-2-1
=loga
a-1
a-3
=1,即
a-1
a-3
=a,…(16分)
所以a=2+
3
且r=1 …(18分)
2°当r<1时,则(r,a-2)?(-∞,-1),所以0<a<1,这与a>1不合,
所以a=2+
3
且r=1.
点评:本小题主要考查函数单调性的应用、函数奇偶性的应用、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案