精英家教网 > 高中数学 > 题目详情

(1-x+x2)(1+x)6展开式中x3项的系数是_________.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
(1)求证:f(0)=1且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数;
(3)设集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+1,g(x)=x,数列{an}满足条件:对于n∈N*,an>0,且a1=1并有关系式:f(an+1)-f(an)=g(an+1),又设数列{bn}满足bn=
log
a
an+1
(a>0且a≠1,n∈N*).
(1)求证数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)试问数列{
1
bn
}是否为等差数列,如果是,请写出公差,如果不是,说明理由;
(3)若a=2,记cn=
1
(an+1)-bn
,n∈N*,设数列{cn}的前n项和为Tn,数列{
1
bn
}的前n项和为Rn,若对任意的n∈N*,不等式λnTn+
2Rn
an+1
<2(λn+
3
an+1
)
恒成立,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x2+1,g(x)=x,数列{an}满足条件:对于n∈N*,an>0,且a1=1并有关系式:f(an+1)-f(an)=g(an+1),又设数列{bn}满足bn=
logaan+1
(a>0且a≠1,n∈N*).
(1)求证数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)试问数列{
1
bn
}是否为等差数列,如果是,请写出公差,如果不是,说明理由;
(3)若a=2,记cn=
1
(an+1)-bn
,n∈N*,设数列{cn}的前n项和为Tn,数列{
1
bn
}的前n项和为Rn,若对任意的n∈N*,不等式λnTn+
2Rn
an+1
<2(λn+
3
an+1
)
恒成立,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省台州市仙居县宏大中学高一(上)期中数学试卷(解析版) 题型:解答题

设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
(1)求证:f(0)=1且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数;
(3)设集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省宜春市上高二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
(1)求证:f(0)=1且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数;
(3)设集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案