精英家教网 > 高中数学 > 题目详情

【题目】已知函数),与图象的对称轴相邻的的零点为.

(Ⅰ)讨论函数在区间上的单调性;

(Ⅱ)设的内角的对应边分别为,且,若向量与向量共线,求的值.

【答案】(1)当时,在区间上单调递增,在区间上单调递减.(2)

【解析】试题分析:(1)由倍角公式和降幂公式函数,由相邻对称轴与零点的距离为。所以,求出单调增区间与单调减区间与做交集可求。(2)由. 与向量共线,所以,由正弦定理得,,再由角C的余弦定理可求。

试题解析:(Ⅰ)

由与图象的对称轴相邻的零点为,得

所以,即

,函数单调增区间是

易知

所以当时,在区间上单调递增,在区间上单调递减.

(Ⅱ),则

因为,所以

从而

解得.

因为与向量共线,所以

由正弦定理得,

由余弦定理得, ,即

由①②解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos x,sin x), =(cos x,﹣sin x),且x∈[0, ].求:
(1)
(2)若f(x)= ﹣2λ 的最小值是﹣ ,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程 表示焦点在y轴上的椭圆,命题q:关于x的方程x2+2mx+2m+3=0无实根,
(1)若命题p为真命题,求实数m的取值范围;
(2)若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若,恒有成立,求实数的取值范围;

(Ⅱ)若函数有两个相异极值点 ,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数在区间上的最大值;

(2)若是函数图像上不同的三点,且,试判断之间的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aln(2x+1)+bx+1.
(1)若函数y=f(x)在x=1处取得极值,且曲线y=f(x)在点(0,f(0))处的切线与直线2x+y﹣3=0平行,求a的值;
(2)若 ,试讨论函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在定义域[﹣1,1]是奇函数,当x∈[﹣1,0]时,f(x)=﹣3x2
(1)当x∈[0,1],求f(x);
(2)对任意a∈[﹣1,1],x∈[﹣1,1],不等式f(x)≤2cos2θ﹣asinθ+1都成立,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是偶函数,g(x)=t2x+4,
(1)求a的值;
(2)当t=﹣2时,求f(x)<g(x)的解集;
(3)若函数f(x)的图象总在g(x)的图象上方,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a、b为常数),且f(1)= ,f(0)=0.
(1)求函数f(x)的解析式;
(2)判断函数f(x)在定义域上的奇偶性,并证明;
(3)对于任意的x∈[0,2],f(x)(2x+1)<m4x恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案
閸忥拷 闂傦拷