精英家教网 > 高中数学 > 题目详情
16.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两墙足够长),用16m长的篱笆围成一个矩形花园ABCD(篱笆只围AB、BC两边),在P处有一棵树与墙CD、AD的距离分别是a(0<a<12)m和4m,现需要将这棵树围在花园内(含边界,不考虑树的粗细).设矩形ABCD的面积是ym2,长DA为xm.
(1)设y=f(x),求y=f(x)的解析式并求出其定义域;
(2)试求y=f(x)的最大值与最小值之差g(a).

分析 (1)AD长为x,则CD长为16-x,由题意可得a≤x≤12,运用矩形的面积公式,即可得到所求解析式和定义域;
(2)讨论a的范围,当0<a≤4时,当4<a≤8时,当8<a<12时,结合二次函数的对称轴和单调性,即可得到最值,进而得到g(a)的解析式.

解答 解:(1)AD长为x,则CD长为16-x,
又因为要将P点围在矩形ABCD内,
∴a≤x≤12,
则矩形ABCD的面积为y=f(x)=x(16-x),定义域为[a,12];
(2)当0<a≤4时,当且仅当x=8时,f(x)取得最大值64,
x=a时,取得最小值,且为a(16-a),可得g(a)=64-16a+a2
当4<a≤8时,f(x)的最大值为64,最小值为12×(16-12)=48,
g(a)=64-48=16;
当8<a<12时,[a,12]为递减区间,可得:
f(x)的最大值为a(16-a),最小值为48,
即有g(a)=16a-a2-48.
则有g(a)=$\left\{\begin{array}{l}{64-16a+{a}^{2},0<a≤4}\\{16,4<a≤8}\\{16a-{a}^{2}-48,8<a<12}\end{array}\right.$.

点评 本题考查二次函数的解析式和最值的求法,注意运用分类讨论的思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足a1=1,Sn为数列{an}的前n项和,n∈N*
(1)若an+1-an=pn(p≠0),且a1,2a2,3a3成等差数列,求p的值及an
(2)若Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N*),求S100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知sinα-cosα=$\frac{1}{5}$,且0<α<π,则tanα=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{a}$=(sinωx,1),$\overrightarrow{b}$=(1,cosωx),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的周期为π,则f(x)的一个对称中心为(  )
A.($\frac{π}{4}$,0)B.(-$\frac{π}{4}$,0)C.($\frac{π}{8}$,0)D.(-$\frac{π}{8}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-OABC的底面为一矩形,PO⊥平面OABC.设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OC}$=$\overrightarrow{b}$,$\overrightarrow{OP}$=$\overrightarrow{c}$,E,F分别是PC和PB的中点,用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$表示$\overrightarrow{BF}$、$\overrightarrow{BE}$、$\overrightarrow{AE}$、$\overrightarrow{EF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设等差数列{an}的前n项和为Sn,且a2=8,S4=40.数列{bn}的前n项和为Tn,且Tn-2bn+3=0,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{{b}_{n},n为偶数}\end{array}\right.$,求数列{cn}的前2n项和P2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系xOy平面中,两个定点A(-1,2),B(1,4),点M在x轴上运动.
(1)若点M在坐标轴上运动,满足MA⊥MB点M的个数为0;
(2)若点M在x轴上运动,当∠AMB最大时的点M坐标为(1,0),(-7,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙两人连续6年对农村甲鱼养殖业(产量)进行调查,提供了两个方面的信息,甲调查表明,每个甲鱼池平均出产量从第一年1万只上升到第六年的2万只.
第1年第2年第3年第4年第5年第6年
每池产量1万只1.2万只1.4万只1.6万只1.8万只2万只
乙调查表明,甲鱼池的个数由第一年的30个减少到第6年的10个.
第1年第2年第3年第4年第5年第6年
鱼池个数30个26个22个18个14个10个
(1)求第2年全县产甲鱼的总数;
(2)到第6年这个县甲鱼养殖业的规模比第1年是扩大了还是缩小了?说明理由.
(3)求哪一年的规模最大?说明原因.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在几何体①圆锥;②正方体;③圆柱;④球;⑤正四面体中,三视图完全一样的是②④.

查看答案和解析>>

同步练习册答案