本小题满分12分)
今有一长2米宽1米的矩形铁皮,如图,在四个角上分别截去一个边长为x米的正方形后,沿虚线折起可做成一个无盖的长方体形水箱(接口连接问题不考虑).
(Ⅰ)求水箱容积的表达式,并指出函数的定义域;
(Ⅱ)若要使水箱容积不大于立方米的同时,又使得底面积最大,求x的值.
(1) {x|0<x<} (2)
【解析】
试题分析:解:(Ⅰ)由已知该长方体形水箱高为x米,底面矩形长为(2-2x)米,宽(1-2x)米.
∴该水箱容积为
f(x)=(2-2x)(1-2x)x=4x3-6x2+2x. ………………………4分
其中正数x满足∴0<x<.
∴所求函数f(x)定义域为{x|0<x<}.………………………6分
(Ⅱ)由f(x)≤4x3,得x ≤ 0或x ≥,
∵定义域为{x|0<x<},∴ ≤ x<.………………………8分
此时的底面积为S(x)=(2-2x)(1-2x)=4x2-6x+2
(x∈[,)).由S(x)=4(x-)2-,………………………10分
可知S(x)在[ ,)上是单调减函数,
∴x=.即满足条件的x是.………………………12分
考点:本试题考查了函数的实际运用。
点评:对于实际运用题,要准确的审清题意,并能抽象出函数关系式,然后结合分段函数的性质来分析定义域和单调性,以及求解最值的问题。注意实际问题中,变量的范围确定,要符合实际意义,属于中档题。
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com