【题目】如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,E、F分别为DD1、DB的中点.
(1)求证:EF⊥B1C;
(2)求三棱锥E﹣FCB1的体积.
【答案】
(1)证明:∵ABCD﹣A1B1C1D1是正方体,
∴B1C⊥AB,B1C⊥BC1,又AB∩BC1=B
∴B1C⊥平面ABC1D1,
∴B1C⊥BD1,
又∵E、F分别为DD1、DB的中点,∴EF∥BD1,
∴EF⊥B1C
(2)解:∵CF⊥平面BDD1B1,
∴CF⊥平面EFB1,
由已知得CF=BF= ,
∵EF= BD1, , = ,
∴ ,即∠EFB1=90°,
∴ = =
【解析】(1)由已知在棱长为2的正方体ABCD﹣A1B1C1D1中,E、F分别为DD1、DB的中点,可得B1C⊥AB,B1C⊥BC1 , 进一步得到B1C⊥平面ABC1D1 , 进而B1C⊥BD1 , 再由中位线定理即可得到EF⊥B1C;(2)由题意,可先证明出CF⊥平面BDD1B1 , 由此得出三棱锥的高,再求出底面△B1EF的面积,然后由等积法把三棱锥E﹣FCB1的体积转化为C﹣B1EF的体积求解.
科目:高中数学 来源: 题型:
【题目】某数学老师对本校2013届高三学生某次联考的数学成绩进行分析,按1:50进行分层抽样抽取20名学生的成绩进行分析,分数用茎叶图记录如图所示(部分数据丢失),得到的频率分布表如下:
分数段(分) | [50,70] | [70,90] | [90,110] | [110,130] | [130,150] | 合计 |
频数 | b | |||||
频率 | a | 0.25 |
(1)表中a,b的值及分数在[90,100)范围内的学生,并估计这次考试全校学生数学成绩及格率(分数在[90,150]范围为及格);
(2)从大于等于110分的学生随机选2名学生得分,求2名学生的平均得分大于等于130分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)满足f(x)+f(2﹣x)=2,当x∈(0,1]时,f(x)=x2 , 当x∈(﹣1,0]时, ,若定义在(﹣1,3)上的函数g(x)=f(x)﹣t(x+1)有三个不同的零点,则实数t的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中日“钓鱼岛争端”问题越来越引起社会关注,我校对高一名学生进行了一次“钓鱼岛”知识测试,并从中抽取了部分学生的成绩,(满分分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
(1)填写答题卡频率分布表中的空格, 补全频率分布直方图, 并标出每个小矩形对应的纵轴数据;
(2)请你估算该年级的平均数及中位数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校餐厅每天供应500名学生用餐,每星期一有A、B两种菜可供选择.调查表明,凡是在这星期一选A种菜的,下星期一会有20%改选B种菜;而选B种菜的,下星期一会有30%改选A菜.用an , bn分别表示在第n个星期选A的人数和选B的人数,若a1=300,则a20=( )
A.260
B.280
C.300
D.320
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com