精英家教网 > 高中数学 > 题目详情
设椭圆的左右焦点分别为F1、F2A是椭圆C上的一点,且,坐标原点O到直线AF1的距离为
(1)求椭圆C的方程;
(2)设Q是椭圆C上的一点,过点Q的直线l交x轴于点F(-1,0),交y轴于点M,若|MQ|=2|QF|,求直线l的斜率.
【答案】分析:(1)题设知F1和F2的坐标,根据,推断有,设点A的坐标为根据原点O到直线AF1的距离求得a,进而求得b.答案可得.
(2)设直线斜率为k,则直线l的方程为y=k(x+1),设Q(x1,y1),由于Q,F,三点共线,且|MQ|=|2QF|.进而可得(x1,y1-k)=±2(x1+1,y),求得x1和y1,代入椭圆方程即可求得k,进而得到直线斜率.
解答:解:(1)由题设知F1(-,0),F2,0),其中a>
由于,则有,所以点A的坐标为(±
故AF1所在直线方程为y=±(),所以坐标原点O到直线AF1的距离为
又|OF1|=,所以=|=,解得:a=2.
∴所求椭圆的方程为
(2)由题意可知直线l的斜率存在,设直线斜率为k,则直线l的方程为y=k(x+1),故M(0,k).
设Q(x1,y1),由于Q,F,三点共线,且|MQ|=|2QF|.
根据题意得(x1,y1-k)=±2(x1+1,y1),解得
又Q在椭圆C上,故
解得k=0,k=±4,综上,直线的斜率为0或±4
点评:本题主要考查了椭圆的标准方程和直线与椭圆的关系.常需要直线方程和椭圆方程联立,根据韦达定理求得问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分12分)

设椭圆的左右焦点分别为,离心率,右准线为上的两个动点,

(Ⅰ)若,求的值;

(Ⅱ)证明:当取最小值时,共线。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)设椭圆的左右焦点分别为,离心率,过分别作直线,且分别交直线两点。

(Ⅰ)若,求 椭圆的方程;

(Ⅱ)当取最小值时,试探究

的关系,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆的左右焦点分别为,离心率,点到右准线为的距离为(Ⅰ)求的值;(Ⅱ)设上的两个动点,,证明:当取最小值时,

查看答案和解析>>

科目:高中数学 来源:2011年江西省高二上学期期末终结性数学文卷 题型:解答题

设椭圆的左右焦点分别为是椭圆上的一点,且,坐标原点到直线的距离为

(1)求椭圆的方程;

(2) 设是椭圆上的一点,过点的直线轴于点,交轴于点,若,求直线的斜率.

 

查看答案和解析>>

科目:高中数学 来源:广东省2012届高二下学期期末考试数学(文) 题型:解答题

(本小题满分14分)设椭圆的左右焦点分别为,离心率,点在直线:的左侧,且F2l的距离为

(1)求的值;

(2)设上的两个动点,,证明:当取最小值时,

 

查看答案和解析>>

同步练习册答案