精英家教网 > 高中数学 > 题目详情
1.已知正项等比数列{an}的前n项和为Sn,且S1,S3,S4成等差数列,则数列{an}的公比为$\frac{1+\sqrt{5}}{2}$.

分析 设正项等比数列{an}的公比为q,由于S1,S3,S4成等差数列,可得2S3=S1+S4,q=1不成立,可得$2\frac{{a}_{1}({q}^{3}-1)}{q-1}$=a1+$\frac{{a}_{1}({q}^{4}-1)}{q-1}$,化简解出即可.

解答 解:设正项等比数列{an}的公比为q,
∵S1,S3,S4成等差数列,
∴2S3=S1+S4
q=1不成立,
∴$2\frac{{a}_{1}({q}^{3}-1)}{q-1}$=a1+$\frac{{a}_{1}({q}^{4}-1)}{q-1}$,
化为q3-2q2+1=0,
(q-1)(q2-q-1)=0,q≠1,q>0,
解得q=$\frac{1+\sqrt{5}}{2}$.
故答案为:$\frac{1+\sqrt{5}}{2}$.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若sin(π+α)=-$\frac{1}{2}$,则sin(4π-α)的值是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}是公比为q的单调递增的等比数列,且a1+a4=9,a2a3=8,则a1=1,q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$f(x)=sin(2x+\frac{π}{3})+sin(2x-\frac{π}{3}),g(x)=\sqrt{3}cos2x$
(1)设h(x)=f(x)g(x),求函数h(x)在[0,π]上的单调递减区间;
(2)若一动直线x=t与函数y=f(x),y=g(x)的图象分别交于M,N两点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知不等式ax-1>0的解集{x|x<-1},不等式ax2+bx+c>0的解集是{x|-2<x<1},则a+b+c的值为(  )
A.2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.李庄村电费收取有以下两种方案供农户选择:
方案一:每户每月收管理费2元,月用电不超过30度每度0.5元,超过30度时,超过部分按每度0.6元.
方案二:不收管理费,每度0.58元.
(1)求方案一收费L(x)元与用电量x(度)间的函数关系;
(2)李刚家九月份按方案一交费35元,问李刚家该月用电多少度?
(3)李刚家月用电量在什么范围时,选择方案一比选择方案二更好?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对于函数f(x)(x∈R),假如实数x0满足f(x0)=x0为f(x)的“不动点”;若实数x0满足f[f(x0)]=x0,则称x0为f(x)的“稳定点”,记函数f(x)的“不动点”和“稳定点”的集合分别为A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)设函数f(x)=3x-8,求集合A和B;
(2)判断集合A和B的关系,并说明理由;
(3)设函数f(x)=ax2+bx+c(a≠0),且A=∅,求证:B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知4x+x-1=6,求$8{x^{\frac{3}{2}}}+{x^{-\frac{3}{2}}}$的值;
(2)若log32=m,log53=n,用m,n表示log415.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\sqrt{-{x^2}+2x+8}$的单调递增区间是(  )
A.(-∞,1)B.(-2,1)C.(1,4)D.(1,+∞)

查看答案和解析>>

同步练习册答案