精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
-5      x<-3
2x+1  -3≤x≤2
5         x>2
(1)求函数值f(2),f[f(1)];(2)画出函数图象,并写出f(x)的值域.(不必写过程)
分析:(1)分段函数的函数值分段求,本题中因为-3≤2≤2,所以f(2)=2×2+1=5,对于f[f(1)]可先求内括号函数值再求函数值
(2)分段函数的图象分段画,本题中函数由三段构成,两条射线和一条线段,在直角坐标系中作图即可,注意区间端点处的函数值是否连续,最后数形结合写出函数值域即可
解答:解:(1)∵f(x)=
-5      x<-3
2x+1  -3≤x≤2
5         x>2

∴f(2)=2×2+1=5,f[f(1)]=f[2×1+1]=f(3)=5
∴f(2)=5;f[f(1)]=5
(2)函数图象如图
函数f(x)的值域为[-5,5]
点评:本题考察了分段函数函数值的求法,分段函数函数图象的画法,和数形结合求函数值域的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案