分析 (1)设等比数列{an}的公比为q>1,由a2=6,a1+a2+a3=26,可得$\frac{6}{q}+6+6q$=26,解得q即可得出.
(2)设等差数列{cn}的公差为d,cn=an+bn,b1=a1,b3=-10.可得c1,c3.利用等差数列的通项公式可得d.利用bn=cn-an即可得出.再利用等差数列与等比数列的前n项和公式即可得出.
解答 解:(1)设等比数列{an}的公比为q>1,∵a2=6,a1+a2+a3=26,
∴$\frac{6}{q}+6+6q$=26,
化为3q2-10q+3=0,q>1.
解得q=3,
∴an=${a}_{2}{q}^{n-2}$=6×3n-2=2×3n-1.
(2)设等差数列{cn}的公差为d,
cn=an+bn,b1=a1,
∴c1=2a1=4.
c3=a3+b3=18-10=8,
∴8=4+2d,解得d=2.
∴cn=4+2(n-1)=2n+2.
∴bn=cn-an=2(n+1)-2×3n-1.
∴数列{bn}的前n项和Sn=$2×\frac{n(n+3)}{2}$-2×$\frac{{3}^{n}-1}{3-1}$=n2+3n-3n+1.
点评 本题考查了等差数列与等比数列的通项公式与前n项和公式、递推关系的应用,考查了推理能力与计算能力,属于中档题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,4) | B. | (2,4) | C. | (2,6) | D. | (4,6) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{4}{17}$ | B. | $\frac{4}{5}$ | C. | $±\frac{4}{17}$ | D. | $\frac{4}{17}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com