精英家教网 > 高中数学 > 题目详情
8.在公比大于1的等比数列{an}中,a2=6,a1+a2+a3=26,设cn=an+bn,且数列{cn}是等差数列,b1=a1,b3=-10.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Sn

分析 (1)设等比数列{an}的公比为q>1,由a2=6,a1+a2+a3=26,可得$\frac{6}{q}+6+6q$=26,解得q即可得出.
(2)设等差数列{cn}的公差为d,cn=an+bn,b1=a1,b3=-10.可得c1,c3.利用等差数列的通项公式可得d.利用bn=cn-an即可得出.再利用等差数列与等比数列的前n项和公式即可得出.

解答 解:(1)设等比数列{an}的公比为q>1,∵a2=6,a1+a2+a3=26,
∴$\frac{6}{q}+6+6q$=26,
化为3q2-10q+3=0,q>1.
解得q=3,
∴an=${a}_{2}{q}^{n-2}$=6×3n-2=2×3n-1
(2)设等差数列{cn}的公差为d,
cn=an+bn,b1=a1
∴c1=2a1=4.
c3=a3+b3=18-10=8,
∴8=4+2d,解得d=2.
∴cn=4+2(n-1)=2n+2.
∴bn=cn-an=2(n+1)-2×3n-1
∴数列{bn}的前n项和Sn=$2×\frac{n(n+3)}{2}$-2×$\frac{{3}^{n}-1}{3-1}$=n2+3n-3n+1.

点评 本题考查了等差数列与等比数列的通项公式与前n项和公式、递推关系的应用,考查了推理能力与计算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}满足:a6=13,a2+a4=14,{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令bn=$\frac{4}{({a}_{n}-1)({a}_{n+1}-1)}$,(n∈N*),求数列{bn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.平面上到定点A(l,2)距离为1且到定点B(5,5)距离为d的直线共有4条,则d的取值范是(  )
A.(0,4)B.(2,4)C.(2,6)D.(4,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:集合 A={x|x2+(m+2)x+1=0,x∈R},集合 B=(0,+∞),且 A∩B≠∅;命题q:方程x2-mx+1=0有两个不相等的实数根.
(1)求命题p成立时的集合 P以及命题q成立时的集合Q;
(2)若“p或q”为真命题,“p且q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设P(x,y)是曲线C:$\left\{\begin{array}{l}{x=-2+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数,0≤θ<2π)上任意一点,
(1)将曲线化为普通方程;
(2)求$\frac{y}{x}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.$C\left.\begin{array}{l}{1}\\{20}\end{array}\right.$+$C\left.\begin{array}{l}{2}\\{20}\end{array}\right.$+C$\left.\begin{array}{l}{3}\\{20}\end{array}\right.$+…+C$\left.\begin{array}{l}{20}\\{20}\end{array}\right.$=220-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=$\frac{1}{|x-t|}$的定义域为A,函数g(x)=$\sqrt{{x}^{2}-x-2}$的定义域是B,若A∩B=B,求实数t的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若$\frac{sinθ+2cosθ}{sinθ-cosθ}$=2,则sinθ•cosθ=(  )
A.-$\frac{4}{17}$B.$\frac{4}{5}$C.$±\frac{4}{17}$D.$\frac{4}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}的前n项和为Sn,且2Sn-an+1=2Sn-1+an-1(n≥2,n∈N*).
(1)证明:数列{2an-1}是等差数列;
(2)若a1=1,a3=3,bn=$\frac{36}{(2{a}_{n+1}+1)(2{a}_{n}+1)}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案