精英家教网 > 高中数学 > 题目详情

【题目】如图,在中,,斜边可以通过以直线为轴旋转得到,且二面角是直二面角,动点在斜边上.

(1)当DAB的中点时,求异面直线AOCD所成角的正切值;

(2)求CD与平面AOB所成角的正切值的最大值.

【答案】(1); (2).

【解析】

(1)求异面直线所成的角需要将两条异面直线平移交于一点的中点故平移时很容易应联想中位线垂足为连接,则是异面直线所成的角利用解三角形的有关知识夹角问题即可;(2)本题的设问是递进式的求直线与平面所成的角与平面所成角,

,当最小时,最大.

(1)作DE⊥OB,垂足为E,连接CE,所以DE∥AO,

∴∠CDE(或其补角)是异面直线AO与CD所成的角.

中,

,所以

∴在中,

所以异面直线AO与CD所成角的余弦值大小为.

(2)由(1)知,平面

与平面所成的角,并且

最小时,最大,这时,,垂足为

所以,∴

所以与平面所成的角的最大时的正切值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1 , A2 , A3 , A4 , A5 , A6和4名女志愿者B1 , B2 , B3 , B4 , 从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(12分)
(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.
(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线在点()处的切线方程;

(2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数z1=(a2-4sin2θ)+(1+2cos θ)i,aR,θ(0,π),z2在复平面内对应的点在第一象限,且z=-3+4i.

(1)z2|z2|.

(2)z1z2,求θa2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解篮球爱好者小张的投篮命中率与打篮球时间之间的关系,下表记录了小张某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率之间的关系:

时间

1

2

3

4

5

命中率

0.4

0.5

0.6

0.6

0.4


(1)求小张这天的平均投篮命中率;

(2)利用所给数据求小张每天打篮球时间(单位:小时)与当天投篮命中率之间的线性回归方程;(参考公式:

(3)用线性回归分析的方法,预测小李该月号打小时篮球的投篮命中率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,离心率

(1)求椭圆的标准方程

(2)若分别是椭圆的左、右焦点,过的直线与椭圆交于不同的两点,求的内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年10月18日至24日,中国共产党第十九次全国人民代表大会在北京顺利召开.大会期间,北京某高中举办了一次“喜迎十九大”的读书读报知识竞赛,参赛选手为从高一年级和高二年级随机抽取的各100名学生.图1和图2分别是高一年级和高二年级参赛选手成绩的频率分布直方图.

(1)分别计算参加这次知识竞赛的两个年级学生的平均成绩;

(2)若称成绩在68分以上的学生知识渊博,试以上述数据估计该高一、高二两个年级学生的知识渊博率;

(3)完成下面2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下,认为高一、高二两个年级学生这次读书读报知识竞赛的成绩有差异.

分类

成绩低于60分人数

成绩不低于60分人数

总计

高一年级

高二年级

总计

附:

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

K2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中社团进行社会实践,对岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”,通过调查分别得到如图所示统计表和各年龄段人数频率分布直方图:

完成以下问题:

(Ⅰ)补全频率分布直方图并求的值;

(Ⅱ)从岁年龄段的“时尚族”中采用分层抽样法抽取人参加网络时尚达人大赛,其中选取人作为领队,记选取的名领队中年龄在岁的人数为,求的分布列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先阅读下列题目的证法,再解决后面的问题.

已知a1,a2∈R,且a1+a2=1,求证:a+a.

证明:构造函数f(x)=(x-a1)2+(x-a2)2,则f(x)=2x2-2(a1+a2)x+a+a=2x2-2x+a+a.

因为对一切x∈R,恒有f(x)≥0,

所以Δ=4-8(a+a)≤0,从而得a+a.

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请由上述结论写出关于a1,a2,…,an的推广式;

(2)参考上述证法,请对你推广的结论加以证明.

查看答案和解析>>

同步练习册答案