分析 (Ⅰ)设AC交BD于点O,连结OQ,证明OQ∥PC.即可利用直线与平面平行的判定定理证明PC∥平面BDQ.
(Ⅱ)连结OP.说明BD⊥AC,BD⊥PO,然后证明BD⊥平面PAC,利用平面与平面垂直的判定定理证明平面PAC⊥平面BDQ.
解答 (本小题满分13分)
(Ⅰ)证明:设AC交BD于点O,连结OQ.(1分)
因为 底面ABCD为菱形,
所以 O为AC中点.
因为 Q是PA的中点,
所以 OQ∥PC.(4分)
因为 OQ?平面BDQ,PC?平面BDQ,
所以PC∥平面BDQ.(5分)
(Ⅱ)证明:连结OP.(6分)
因为 底面ABCD为菱形,
所以 BD⊥AC,O为BD中点.(8分)
因为 PB=PD,
所以 BD⊥PO.(10分)
又因为:AO∩AC=0,
所以 BD⊥平面PAC.(11分)
因为 BD?平面BDQ,
所以 平面PAC⊥平面BDQ.(13分).
点评 本题考查平面与平面垂直的判定定理的应用,直线与平面平行的判定定理的应用,考查空间想象能力以及逻辑推理能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | BD1∥B1C | B. | A1D1∥平面AB1C | C. | BD1⊥AC | D. | BD1⊥平面AB1C |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com