精英家教网 > 高中数学 > 题目详情
1.已知函数f(x+1)的图象关于x=-1对称,当x≥0时,f(x)=3-x,f(2)-f(2x-1)<0的解为(-$\frac{1}{2}$,$\frac{3}{2}$).

分析 利用f(x)与f(x+1)的图象图象间的关系,判断f(x)的图象关于y轴对称,f(x)是偶函数,根据x≥0时,f(x)=3-x,得到函数的单调性,则原不等式转化为|2x-1|<2,解得即可.

解答 解:∵f(x+1)的图象关于x=-1对称,
∴f(x)的图象关于y轴对称,即f(x)是偶函数,
∵由x≥0时,f(x)=3-x知,
f(x)在x≥0时递减,在x<0时递增,
∵f(2)-f(2x-1)<0,
∴f(2)<f(2x-1),
∴|2x-1|<2,
∴$-\frac{1}{2}<x<\frac{3}{2}$.
故答案为:(-$\frac{1}{2}$,$\frac{3}{2}$).

点评 本题考查函数图象的平移变换及函数的单调性和不等式的解集问题,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆E:$\frac{x^2}{4}+\frac{y^2}{2}$=1,
(1)若椭圆上存在两点A,B关于直线y=-2x+1对称,求直线AB的方程;
(2)过$P(\sqrt{2},5\sqrt{2})$的直线l交椭圆于M,N两点,求|PM|•|PN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某楼盘按国家去库存的要求,据市场调查预测,降价销售.今年110平方米套房的销售将以每月10%的增长率增长;90平方米套房的销售将每月递增10套.已知该地区今年1月份销售110平方米套房和90平方米套房均为20套,据此推测该地区今年这两种套房的销售总量约为1320套(参考数据:1.111≈2.9,1.112≈3.1,1.113≈3.5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数z满足(1+3i)z=i-3,则z等于(  )
A.iB.$\frac{4-3i}{5}$C.-iD.$\frac{5}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(a>0,b>0),点(4,-2)在它的一条渐近线上,则离心率等于(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为$ρ=\sqrt{2}$,直线l的参数方程为$\left\{\begin{array}{l}x=2+tcosα\\ y=2+tsinα\end{array}\right.$(t为参数).
(1)点P在曲线C上,Q在直线l上,若$α=\frac{3}{4}π$,求线段|PQ|的最小值;
(2)设直线l与曲线C有两个不同的交点,求直线l的斜率k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在R上,且最小正周期为π的函数是(  )
A.y=sin|x|B.y=cos|x|C.y=|sinx|D.y=|cos2x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若角α的始边是x轴正半轴,终边过点P(4,-3),则cosα的值是(  )
A.4B.-3C.$\frac{4}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\frac{1}{2}$x2-ax+blnx+4在x=1处取得极值$\frac{3}{2}$,则实数a+b=5.

查看答案和解析>>

同步练习册答案