【题目】设集合,其中.
(1)写出集合中的所有元素;
(2)设,证明“”的充要条件是“”
(3)设集合,设,使得,且,试判断“”是“”的什么条件并说明理由.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线过点,其参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)若与交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:
①失事船的移动路径可视为抛物线 ;
②定位后救援船即刻沿直线匀速前往救援;
③救援船出发t小时后,失事船所在位置的横坐标为7t
(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.
(2)问救援船的时速至少是多少海里才能追上失事船?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】食品安全一直是人们关心和重视的问题,学校的食品安全更是社会关注的焦点.某中学为了加强食品安全教育,随机询问了36名不同性别的中学生在购买食品时是否看保质期,得到如下“性别”与“是否看保质期”的列联表:
男 | 女 | 总计 | |
看保质期 | 8 | 22 | |
不看保持期 | 4 | 14 | |
总计 |
(1)请将列联表填写完整,并根据所填的列联表判断,能否有的把握认为“性别”与“是否看保质期”有关?
(2)从被询问的14名不看保质期的中学生中,随机抽取3名,求抽到女生人数的分布列和数学期望.
附:,().
临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg(1-x)+lg(1+x)+x4-2x2.
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求函数f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高二学生、两个学科学习成绩的合格情况是否有关,随机抽取了该年级一次期末考试、两个学科的合格人数与不合格人数,得到以下22列联表:
学科合格人数 | 学科不合格人数 | 合计 | |
学科合格人数 | 40 | 20 | 60 |
学科不合格人数 | 20 | 30 | 50 |
合计 | 60 | 50 | 110 |
(1)据此表格资料,能否在犯错的概率不超过0.01的前提下认为“学科合格”与“学科合格”有关;
(2)从“学科合格”的学生中任意抽取2人,记被抽取的2名学生中“学科合格”的人数为,求的数学期望.
附公式与表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离,在某种路面上,某种型号的汽车的刹车距离s(m)与汽车的车速v(m/s)满足下列关系:(n为常数,且),做了两次刹车实验,发现实验数据如图所示其中
(1)求出n的值;
(2)要使刹车距离不超过12.6米,则行驶的最大速度应为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com