精英家教网 > 高中数学 > 题目详情
1.已知实数a>0,b>0,若2a+b=1,则$\frac{1}{a}+\frac{2}{b}$的最小值是(  )
A.$\frac{8}{3}$B.$\frac{11}{3}$C.4D.8

分析 利用“乘1法”与基本不等式的性质.

解答 解:∵实数a>0,b>0,2a+b=1,
则$\frac{1}{a}+\frac{2}{b}$=(2a+b)$(\frac{1}{a}+\frac{2}{b})$=4+$\frac{b}{a}+\frac{4a}{b}$≥4+2$\sqrt{\frac{b}{a}•\frac{4a}{b}}$=8,当且仅当b=2a=$\frac{1}{2}$时取等号.
故选:D.

点评 本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知圆C:x2+y2+6y-a=0的圆心到直线x-y-1=0的距离等于圆C半径的$\frac{1}{2}$,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.P为△ABC边BC上的点,满足3$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为(  )
A.$\frac{2\sqrt{2}}{3}$+1B.2$\sqrt{3}$C.2D.2$\sqrt{2}$+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$是共面的三个向量,其中$\overrightarrow{a}$=($\sqrt{2}$,2),|$\overrightarrow{b}$|=2$\sqrt{3}$,|$\overrightarrow{c}$|=2$\sqrt{6}$,$\overrightarrow{a}$∥$\overrightarrow{c}$.
(Ⅰ)求|$\overrightarrow{c}$-$\overrightarrow{a}$|;
(Ⅱ)若$\overrightarrow{a}$-$\overrightarrow{b}$与3$\overrightarrow{a}$+2$\overrightarrow{b}$垂直,求$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知双曲线的焦点在y轴,实轴长与虚轴长之比为2:3,且经过P($\sqrt{6}$,2),求双曲线方程.
(2)已知焦点在x轴上,离心率为$\frac{5}{3}$,且经过点M(-3,2$\sqrt{3}$)的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|log${\;}_{\frac{1}{2}}$x>-1},B=|x|2x>$\sqrt{2}$|,则A∪B=(  )
A.($\frac{1}{2}$,2)B.($\frac{1}{2}$,+∞)C.(0,+∞)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.表面积为20π的球面上有四点S、A、B、C,且△ABC是边长为2$\sqrt{3}$的等边三角形,若平面SAB⊥平面ABC,则三棱锥S-ABC体积的最大值是3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图1,ABCD为长方形,AB=3,AD=$\sqrt{2}$,E,F分别是边AB,CD上的点,且AE=CF=1,DE与AF相交于点G,将三角形ADF沿AF折起至ADF',使得D'E=1,如图2.
(1)求证:平面D'EG⊥ABCF平面;
(2)求三棱锥D'-BEG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E、F分别是棱PC和PD的中点.
(1)求证:EF∥平面PAB;
(2)若AP=AD,且平面PAD⊥平面ABCD,证明:AF⊥平面PCD.

查看答案和解析>>

同步练习册答案