精英家教网 > 高中数学 > 题目详情

给出问题:已知满足,试判定的形状.某学生的解答如下:

解:(i)由余弦定理可得,

,

是直角三角形.

(ii)设外接圆半径为.由正弦定理可得,原式等价于

是等腰三角形.

综上可知,是等腰直角三角形.

请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果.           .

 

【答案】

等腰或直角三角形

【解析】解:第一种解法中,两边同时约分,造成了方程丢解,那就是等腰三角形

第二种解法中,由于正弦值相等,可能A=B,也可能A+B=

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•普陀区一模)给出问题:已知△ABC满足a•cosA=b•cosB,试判断△ABC的形状,某学生的解答如下:
(i)a•
b2+c2-a2
2bc
=b•
a2+c2-b2
2ac
?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)设△ABC外接圆半径为R,由正弦定理可得,原式等价于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
综上可知,△ABC是等腰直角三角形.
请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果
等腰或直角三角形
等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

给出问题:已知△ABC满足a•cosA=b•cosB,试判断△ABC的形状,某学生的解答如下:
(i)a•数学公式?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)设△ABC外接圆半径为R,由正弦定理可得,原式等价于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
综上可知,△ABC是等腰直角三角形.
请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果________.

查看答案和解析>>

科目:高中数学 来源:2012年上海市普陀区高考数学一模试卷(文科)(解析版) 题型:解答题

给出问题:已知△ABC满足a•cosA=b•cosB,试判断△ABC的形状,某学生的解答如下:
(i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)设△ABC外接圆半径为R,由正弦定理可得,原式等价于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
综上可知,△ABC是等腰直角三角形.
请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果   

查看答案和解析>>

科目:高中数学 来源:2012年上海市普陀区高考数学一模试卷(理科)(解析版) 题型:解答题

给出问题:已知△ABC满足a•cosA=b•cosB,试判断△ABC的形状,某学生的解答如下:
(i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)设△ABC外接圆半径为R,由正弦定理可得,原式等价于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
综上可知,△ABC是等腰直角三角形.
请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果   

查看答案和解析>>

同步练习册答案