精英家教网 > 高中数学 > 题目详情

知椭圆的离心率为,定点,椭圆短轴的端点是,且.
(1)求椭圆的方程;
(2)设过点且斜率不为0的直线交椭圆两点.试问轴上是否存在异于的定点,使平分?若存在,求出点的坐标;若不存在,说明理由.

(1);(2)存在,.

解析试题分析:(1)由离心率为可得到一个关于的方程,再根据MB1⊥MB2即可得;(2)本题采用“设而不求”的方法,将A,B两点坐标设出,但不求出.注意到平分,则直线的倾斜角互补这个性质,从而由斜率着手,以韦达定理为辅助工具,得出点P的坐标.
试题解析:(1)由
,知是等腰直角三角形,从而.
所以椭圆C的方程是.                                  5分
(2)设,直线AB的方程为

所以 ①,②                       8分
平分,则直线的倾斜角互补,
所以
,则有,                                 10分
代入上式,整理得
将①②代入得,由于上式对任意实数都成立,所以.
综上,存在定点,使平分PM平分∠APB.                       13分
考点:1.椭圆的简单几何性质;2.直线与圆锥曲线的位置关系;3.斜率公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆,若椭圆的右顶点为圆的圆心,离心率为.
(1)求椭圆的方程;
(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在轴上方有一段曲线弧,其端点轴上(但不属于),对上任一点及点,满足:.直线分别交直线两点.

(Ⅰ)求曲线弧的方程;
(Ⅱ)求的最小值(用表示);

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,直线l与抛物线相交于不同的两点A,B.
(I)如果直线l过抛物线的焦点,求的值;
(II)如果,证明直线l必过一定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为)的直线与椭圆相交于两点,直线分别交直线 于两点,线段的中点为.记直线的斜率为,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC的两个顶点A,B的坐标分别是(-5,0),(5,0),且AC,BC所在直
线的斜率之积等于m(m≠0),求顶点C的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC中, 点A,B的坐标分别为A(-,0),B(,0)点C在x轴上方.
(Ⅰ)若点C坐标为(,1),求以A,B为焦点且经过点C的椭圆的方程:
(Ⅱ)过点P(m,0)作倾斜角为的直线l交(1)中曲线于M,N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线焦点为,直线经过点且与抛物线相交于两点

(Ⅰ)若线段的中点在直线上,求直线的方程;
(Ⅱ)若线段,求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点分别为,P为椭圆 上任意一点,且的最小值为.
(1)求椭圆的方程;
(2)动圆与椭圆相交于A、B、C、D四点,当为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.

查看答案和解析>>

同步练习册答案