(本题满分16分,第1小题 4分,第2小题6分,第3小题6分)
设函数,数列满足.
⑴求数列的通项公式;
⑵设,若对恒成立,求实数的取值范围;
⑶是否存在以为首项,公比为的数列,,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由.
(本题满分16分,第1小题 4分,第2小题6分,第3小题6分)
解:⑴因为,
所以.…………………………………………………………………………2分
因为,所以数列是以1为首项,公差为的等差数列.
所以.…………………………………………………………………………4分
⑵①当时,
.…………………………………………………………………………6分
②当时,
.…………………………………………8分
所以
要使对恒成立,
只要使.
只要使,
故实数的取值范围为.……………………………………………………10分
⑶由,知数列中每一项都不可能是偶数.
①如存在以为首项,公比为2或4的数列,,
此时中每一项除第一项外都是偶数,故不存在以为首项,公比为偶数的数列.……………………………………………………………………………………12分
②当时,显然不存在这样的数列.
当时,若存在以为首项,公比为3的数列,.
则,,,.
所以满足条件的数列的通项公式为.……………………………………16分
科目:高中数学 来源: 题型:
(本题满分16分,第一小题8分;第二小题8分)
已知是轴正方向的单位向量,设=, =,且满足.
求点的轨迹方程;
过点的直线交上述轨迹于两点,且,求直线的方程.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市高三第三次月考试题文科数学 题型:解答题
. (本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)
已知公差大于零的等差数列的前项和为,且满足,,
(1)求数列的通项公式;
(2)若数列是等差数列,且,求非零常数;
(3)若(2)中的的前项和为,求证:.
查看答案和解析>>
科目:高中数学 来源:上海市长宁区2010届高三第二次模拟考试数学文 题型:解答题
(本题满分16分,第(1)小题4分,第(2)小题6分,第(2)小题6分)
在平行四边形中,已知过点的直线与线段分别相交于点。若。
(1)求证:与的关系为;
(2)设,定义在上的偶函数,当时,且函数图象关于直线对称,求证:,并求时的解析式;
(3)在(2)的条件下,不等式在上恒成立,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(理) 题型:解答题
(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)
设、为坐标平面上的点,直线(为坐标原点)与抛物线交于点(异于).
(1) 若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程;
(2) 若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;
(3) 对(1)中点所在圆方程,设、是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.
查看答案和解析>>
科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题
(本题满分16分,第一小题8分;第二小题8分)
已知是轴正方向的单位向量,设=, =,且满足.
(1) 求点的轨迹方程;
(2) 过点的直线交上述轨迹于两点,且,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com