【题目】下列函数中既是奇函数又是增函数的是( )
A.y=x3+x
B.y=logax
C.y=3x
D.y=﹣
【答案】A
【解析】解:对于A.定义域为R,f(﹣x)=﹣x3﹣x=﹣f(x),即有f(x)为奇函数,
又f′(x)=3x2+1>0,则f(x)在R上递增,故A满足条件;
对于B.则为对数函数,定义域为(0,+∞),则函数没有奇偶性,故B不满足条件;
对于C.则为指数函数,f(﹣x)≠﹣f(x),则不为奇函数,故C不满足条件;
对于D.则为反比例函数,定义域为(﹣∞,0)∪(0,+∞),f(﹣x)=﹣f(x),则f(x)为奇函数,
且在(﹣∞,0)和(0,+∞)均为增函数,故D不满足条件.
故选A.
【考点精析】本题主要考查了函数单调性的判断方法和函数的奇偶性的相关知识点,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;偶函数的图象关于y轴对称;奇函数的图象关于原点对称才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sinx,将函数y=f(x)的图象向右平移个单位,再把横坐标缩短到原来的(纵坐标不变),得到函数y=g(x)的图象,求函数y=g(x)的解析式,并写出它的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是等比数列,首项a1=2,a4=16
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}是等差数列,且b3=a3 , b5=a5 , 求数列{bn}的通项公式及前n项的和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为方便市民休闲观光,市政府计划在半径为200米,圆心角为120°的扇形广场内(如图所示),沿△ABC边界修建观光道路,其中A、B分别在线段CP、CQ上,且A、B两点间距离为定长 米.
(1)当∠BAC=45°时,求观光道BC段的长度;
(2)为提高观光效果,应尽量增加观光道路总长度,试确定图中A、B两点的位置,使观光道路总长度达到最长?并求出总长度的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,过点P(﹣5,a)作圆x2+y2﹣2ax+2y﹣1=0的两条切线,切点分别为M(x1 , y1),N(x2 , y2),且 + =0,则实数a的值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的三内角A、B、C成等差数列,sinA、sinB、sinC成等比数列,则这个三角形的形状是( )
A.直角三角形
B.钝角三角形
C.等腰直角三角形
D.等边三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=sin(ωx+φ)+cos(ωx+φ) 的最小正周期为π,且f(﹣x)=f(x),则( )
A.f(x)在 单调递减
B.f(x)在( , )单调递减
C.f(x)在(0, )单调递增
D.f(x)在( , )单调递增
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的个数是( )
①过异面直线a,b外一点P有且只有一个平面与a,b都平行;
②异面直线a,b在平面α内的射影相互垂直,则a⊥b;
③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
④直线a,b分别在平面α,β内,且a⊥b,则α⊥β.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC.O为AB的中点,OF⊥EC. (Ⅰ)求证:OE⊥FC:
(Ⅱ)若 = 时,求二面角F﹣CE﹣B的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com