A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 1 |
分析 由于三角形的内心是三个内角的平分线的交点,根据三角形内角平分线性质定理把所求的比值转化为三角形边长之间的比值关系来求解.
解答 解:如图,连接IF1,IF2.在△MF1I中,F1I是∠MF1N的角平分线,
根据三角形内角平分线性质定理,$\frac{|MI|}{|IN|}$=$\frac{\left|{MF}_{1}\right|}{\left|{F}_{1}N\right|}$
同理可得$\frac{|MI|}{|IN|}$=$\frac{\left|{MF}_{2}\right|}{\left|{F}_{2}N\right|}$,
∴$\frac{|MI|}{|IN|}$=$\frac{\left|{MF}_{2}\right|}{\left|{F}_{2}N\right|}$=$\frac{\left|{MF}_{1}\right|}{\left|{F}_{1}N\right|}$;
根据等比定理$\frac{|MI|}{|IN|}$=$\frac{\left|{MF}_{1}\right|+\left|{MF}_{2}\right|}{\left|{F}_{1}N\right|+\left|{F}_{2}N\right|}$=$\frac{2a}{2c}$=$\frac{2×2\sqrt{2}}{2\sqrt{8-4}}$=$\sqrt{2}$.
故选:B.
点评 本题主要考查圆锥曲线的定义的应用,试题在平面几何中的三角形内角平分线性质定理、初中代数中的等比定理和圆锥曲线的定义之间进行了充分的交汇,在解决涉及到圆锥曲线上的点与焦点之间的关系的问题中,圆锥曲线的定义往往是解题的突破口.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 和两条异面直线都相交的两条直线是异面直线 | |
B. | 和两条异面直线都相交于不同点的两条直线是异面直线 | |
C. | 和两条异面直线都垂直的直线是异面直线的公垂线 | |
D. | 若a、b是异面直线,b、c是异面直线,则a、c是异面直线 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{21}$ | B. | $\frac{4}{21}$ | C. | $\frac{5}{21}$ | D. | $\frac{11}{42}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com