精英家教网 > 高中数学 > 题目详情
2.定义运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,则符合条件$|\begin{array}{l}{1}&{-1}\\{z}&{zi}\end{array}|$=4+2i的复数z的共轭复数$\overline{z}$为(  )
A.3-iB.1+3iC.3+iD.1-3i

分析 由$|\begin{array}{l}{1}&{-1}\\{z}&{zi}\end{array}|$=4+2i,可得zi+z=4+2i,再利用复数的运算性质、共轭复数的定义即可得出.

解答 解:由$|\begin{array}{l}{1}&{-1}\\{z}&{zi}\end{array}|$=4+2i,∴zi+z=4+2i,∴z(1+i)(1-i)=(4+2i)(1-i),
化为:2z=6-2i,即z=3-i.
∴复数z的共轭复数$\overline{z}$=3+i.
故选:C.

点评 本题考查了行列式的运算性质、复数的运算性质、共轭复数的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设抛物线Γ:x2=2py(p>0)的准线被圆O:x2+y2=4所截得的弦长为$\sqrt{15}$
(Ⅰ)求抛物线Γ的方程;
(Ⅱ)设点F是抛物线Γ的焦点,N为抛物线Γ上的一动点,过N作抛物线Γ的切线交圆O于P、Q两点,求△FPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,设倾斜角为α的直线l的参数方程为$\left\{\begin{array}{l}{x=3+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数)与曲线C:$\left\{\begin{array}{l}{x=\frac{1}{cosθ}}\\{y=tanθ}\end{array}\right.$(θ为参数)相交于不同的两点A,B.
(1)若$α=\frac{π}{3}$,求线段AB的中点的直角坐标;
(2)若直线l的斜率为2,且过已知点P(3,0),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.集合P={x|(x-1)2<4,x∈R},Q={-1,0,1,2,3},则P∩Q=(  )
A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)为定义在R上的奇函数,且f(x)在[0,+∞)上单调递增,若f(a)<f(2a-1),则a的取值范围是(  )
A.(-∞,1)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|<$\frac{π}{2}$)的部分图象如图所示,下列说法正确的是(  )
A.函数f(x)的最小正周期为2π
B.函数f(x)的图象关于点(-$\frac{5π}{12}$.0)对称
C.将函数f(x)的图象向左平移$\frac{x}{6}$个单位得到的函数图象关于y轴对称
D.函数f(x)的单调递增区间是[kx+$\frac{7π}{12}$,kπ+$\frac{13π}{12}$],(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=x+2cosx在[0,π]上的最小值为$\frac{5π}{6}$-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{6}}}{3}$,焦距为$2\sqrt{2}$,抛物线${C_2}:{x^2}=2py(p>0)$的焦点F是椭圆C1的顶点.
(I)求C1与C2′的标准方程;
(II)已知直线y=kx+m与C2相切,与C1交于P,Q两点,且满足∠PFQ=90°,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:函数$y=sin\frac{π}{2}x$在x=a处取到最大值;命题q:直线x-y+2=0与圆(x-3)2+(y-a)2=8相切;则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.即不充分也不必要条件

查看答案和解析>>

同步练习册答案