精英家教网 > 高中数学 > 题目详情
若f(x)满足f(-x)=-f(x),且在(-∞,0)内是增函数,又f(-2)=0,则xf(x)>0的解集是(  )
分析:由f(-x)=-f(x)可知f(x)的奇偶性,再根据f(x)在(-∞,0)上的单调性可得f(x)在(0,+∞)上的单调性,及特殊点可作出f(x)的草图,由图象可解得不等式.
解答:解:由f(-x)=-f(x),知f(x)为奇函数,
又∵f(x)在(-∞,0)内是增函数,
∴f(x)在(0,+∞)内也是增函数,
又∵f(-2)=0,
∴f(2)=-f(-2)=0,
作出函数f(x)的草图如图所示:
由图象得,xf(x)>0?
x>0
f(x)>0
x<0
f(x)<0
?
x>0
x>2或-2<x<0
x<0
x<-2或0<x<2
?x>2或x<-2,
∴xf(x)>0的解集是(-∞,-2)∪(2,+∞).
故选C.
点评:本题考查函数的奇偶性、单调性及其应用,考查抽象不等式的求解,考查数形结合思想,根据性质画出函数的草图是解决问题的有效方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(x)满足f(-x)=f(x),且在(-∞,-1]上是增函数,则(  )
A、f(-
3
2
)<f(-1)<f(2)
B、f(-1)<f(-
3
2
)<f(2)
C、f(2)<f(-1)<f(-
3
2
)
D、f(2)<f(-
3
2
)<f(-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若f(x)满足f(-x)=f(x),且在(-∞,-1]上是增函数,则(  )
A.f(-
3
2
)<f(-1)<f(2)
B.f(-1)<f(-
3
2
)<f(2)
C.f(2)<f(-1)<f(-
3
2
)
D.f(2)<f(-
3
2
)<f(-1)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省荆州中学高三(上)第一次质量检测数学试卷 (理科)(解析版) 题型:选择题

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),则x>2时,f(x)单调递增,若x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省荆州中学高三(上)第一次质量检测数学试卷 (文科)(解析版) 题型:选择题

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),则x>2时,f(x)单调递增,若x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省湘西州古丈县补习学校高三(上)第一次月考数学试卷(理科)(解析版) 题型:选择题

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),则x>2时,f(x)单调递增,若x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

同步练习册答案