精英家教网 > 高中数学 > 题目详情
(2011•邢台一模)已知有下列四个命题:
①函数f(x)=2x-x2在(-∞,0)是增函数;
②若f(x)在R上恒有f(x+2)•f(x)=1,则4为f(x)的一个周期;
③函数y=2cosx2+sin2x的最小值为
2
+1

④对任意实数a、b、x、y,都有ax+by≤
a2+b2
x2+y2

则以上命题正确的是
①②④
①②④
分析:①求导,判断导函数的符号,从而确定命题的正确与否;
②以x+2代f(x+2)•f(x)=1中的x,得到f(x+4)=f(x),从而得到结论;
③先利用三角函数的二倍角公式化简函数,再利用公式 asinx+bcosx=
a2+b2
sin(x+θ)化简三角函数,利用三角函数的有界性求出最小值.
④利用基本不等式得 b2x2+a2y2≥2abxy,把 b2x2+a2y2≥2abxy 的两边同时加上a2x2+b2y2,即可得到(a2+b2)(x2+y2)≥(ax+by)2成立,从而得出结论.
解答:解:①f′(x)=2xln2-2x>0(x<0),∴函数f(x)=2x-x2在(-∞,0)是增函数;故该命题正确;
②∵f(x+2)•f(x)=1,∴f(x+4)•f(x+2)=1,∴f(x+4)=f(x),故4为f(x)的一个周期;该命题正确;
③y=2cos2x+sin2x
=1+cos2x+sin2x
=1+
2
2
2
cos2x+
2
2
sin2x)
=1+
2
sin(2x+
π
4

当 2x+
π
4
=2k π-
π
2
,有最小值1-
2
.故该命题错;
④∵b2x2+a2y2≥2abxy,∴a2x2+b2y2+b2x2+a2y2≥a2x2+b2y2+2abxy,
即(a2+b2)(x2+y2)≥(ax+by)2成立,
ax+by≤
a2+b2
x2+y2
;故该命题错;
故答案为:①②④.
点评:此题是个基础题.考查命题的真假判断与应用,考查函数的周期性的定义,同时考查学生灵活应用知识分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•邢台一模)若集合A={x|x2-3x-4>0},B={x||x-3|>4}则A∩(?RB)为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•邢台一模)已知等差数列{an}的公差d≠0,且a1、a2、a4成等比数列,则
S3
S9
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•邢台一模)设an(3-
x
)n
的展开式中x项的系数(n=2、3、4、…),则
lim
n→∞
(
32
a2
+
33
a3
+…+
3n
an
)
=
18
18

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•邢台一模)某射击游戏规定每击中目标一次得20分,游客甲每次击中目标的概率均为
2
3
,则他射5次得60分且恰有一次两连中的概率为
16
81
16
81
.(以最简分数作答)

查看答案和解析>>

同步练习册答案