精英家教网 > 高中数学 > 题目详情

已知函数,且.
(1)判断的奇偶性并说明理由;
(2)判断在区间上的单调性,并证明你的结论;
(3)若在区间上,不等式恒成立,试确定实数的取值范围.

(1)函数上为奇函数;(2)函数上是增函数(3)实数的取值范围是

解析试题分析:(1)由条件可求得函数解析式中的值,从而求出函数的解析式,求出函数的定义域并判断其是否关于原点对称(这一步很容易被忽略),再通过计算,与进行比较解析式之间的正负,从而判断的奇偶性;(2)由(1)可知函数的解析式,根据函数单调性的定义法进行判断求解,(常用的定义法步骤:取值;作差;整理;判断;结论);(3)由(1)可将函数解析式代入不等式可得,经未知数与待定数分离得,在区间上求出的最小值,从而确定实数的取值范围.
试题解析:(1)由得:
,其定义域为关于原点对称

∴函数上为奇函数。                    4分
(2)函数上是增函数,证明如下:
任取,且,则
那么
   ∴函数上是增函数。      8分
(3)由,得
,在区间上,的最小值是,得
所以实数的取值范围是.     14分
考点:1.函数的概念、奇偶性、单调性、最值;2.不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的图象在上连续,定义:.其中,表示函数上的最小值,表示函数上的最大值.若存在最小正整数,使得对任意的成立,则称函数上的“阶收缩函数”.
(Ⅰ)若,试写出的表达式;
(Ⅱ)已知函数,试判断是否为上的“阶收缩函数”.如果是,求出对应的;如果不是,请说明理由;
(Ⅲ)已知,函数上的2阶收缩函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求函数的单调递减区间;
(II)若上恒成立,求实数的取值范围;
(III)过点作函数图像的切线,求切线方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中.
(1)若,求的最小值;
(2)如果在定义域内既有极大值又有极小值,求实数的取值范围;
(3)是否存在最小的正整数,使得当时,不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数的图象在公共点P处有相同的切线,求实数的值及点P的坐标;
(2)若函数的图象有两个不同的交点M、N,求实数的取值范围 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且在时函数取得极值.
(1)求的单调增区间;
(2)若
(Ⅰ)证明:当时,的图象恒在的上方;
(Ⅱ)证明不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处的切线与轴平行.
(1)求的值和函数的单调区间;
(2)若函数的图象与抛物线恰有三个不同交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,若在点处的切线斜率为
(Ⅰ)用表示
(Ⅱ)设,若对定义域内的恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
是函数的极值点,1和是函数的两个不同零点,且,求.
若对任意,都存在为自然对数的底数),使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案