精英家教网 > 高中数学 > 题目详情

【题目】是不同的直线, 是不同的平面,已知,下列说法正确的是 ( )

A. ,则 B. ,则

C. ,则 D. ,则

【答案】B

【解析】由已知对于 可能平行,如图:

对于得到 由面面垂直的判定定理可得正确;对于 ,若 可能相交;如图:

对于 ,则 ,由线面垂直的性质及面面垂直的判定定理可得错误,故选B.

【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点坐标分别是,并且经过点.

(1)求椭圆的方程;

(2)若直线与圆相切,并与椭圆交于不同的两点.,且满足时,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点,根据下列条件分别求出直线的方程:

(1)直线的倾斜角为

(2)与直线x-2y+1=0垂直;

(3)轴、轴上的截距之和等于0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一批产品需要原材料500吨,每吨原材料可创造利润12万元,该公司通过设备升级,生产这批产品所需原材料减少了吨,且每吨原材料创造的利润提高了;若将少用的吨原材料全部用于生产公司新开发的产品,每吨原材料创造的利润为万元,其中

(1)若设备升级后生产这批产品的利润不低于原来生产该批产品的利润,求的取值范围;

(2)若生产这批产品的利润始终不高于设备升级后生产这批产品的利润,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 中, 的中点, .将沿

折起,使点与图中点重合.

(Ⅰ)求证:

(Ⅱ)当三棱锥的体积取最大时,求二面角的余弦值;

(Ⅲ)在(Ⅱ)的条件下,试问在线段上是否存在一点,使与平面所成的角的正弦值为?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x≤1,比较3x33x2x1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,平行四边形直平分现将沿如图2,使

求证:直线

平面平面成的角锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:关于x的方程x2ax20无实根,命题q:函数f(x)logax(0,+)上单调递增,若pq为假命题,pq真命题,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某加工厂需定期购买原材料,已知每公斤原材料的价格为1.5元,每次购买原材料需支付运费600元,每公斤原材料每天的保管费用为0.03元,该厂每天需要消耗原材料400公斤,每次购买的原材料当天即开始使用(即有400公斤不需要保管).

)设该厂每x天购买一次原材料,试写出每次购买的原材料在x天内总的保管费用y1关于x的函数关系式;

)求该厂多少天购买一次原材料才能使平均每天支付的总费用y最少,并求出这个最少(小)值;

查看答案和解析>>

同步练习册答案