精英家教网 > 高中数学 > 题目详情

如图,正六边形ABCDEF中,有下列四个命题:

=2

=2+2

··

④(·) (·)

其中真命题的序号是________.(写出所有真命题的序号)

 

【答案】

①②④

【解析】

试题分析:

,∴①对;

取AD的中点O,则,,∴②对;

,则·×2×cos=3,

·=2×1×cos=1,∴③不对;

·=·=2×1×cos=1=·=1×1×cos=,∴④对。故真命题的序号①②④。

考点:平面向量的数量积,平面向量的线性计算。

点评:简单题,向量的夹角公式。平面向量模的计算,往往“化模为方”,转化成向量的运算。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,P是边长为1的正六边形ABCDEF所在平面外一点,P在平面ABC内的射影为BF的中点O且PO=1,
(Ⅰ)证明PA⊥BF;
(Ⅱ)求面APB与面DPB所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

16、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:
①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.
其中正确的有
①④
(把所有正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD与平面PAB所成角的余弦值为
10
4
.其中正确的有
①④⑤
①④⑤
(把所有正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天门模拟)已知如图,六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC.则下列结论正确的个数是(  )
①CD∥平面PAF   ②DF⊥平面PAF  ③CF∥平面PAB   ④CF∥平面PAD.

查看答案和解析>>

同步练习册答案