精英家教网 > 高中数学 > 题目详情

已知函数
(I)若a=-1,求函数的单调区间;
(Ⅱ)若函数的图象在点(2,f(2))处的切线的倾斜角为45o,对于任意的t [1,2],函数的导函数)在区间(t,3)上总不是单调函数,求m的取值范围;
(Ⅲ)求证:

(1)的单调增区间为,减区间为 .
(2)
(3)由(Ⅰ)可知当,即根据函数最值来证明即可。

解析试题分析:解:(Ⅰ)当时,   解;解的单调增区间为,减区间为 . ………4分
(Ⅱ) ∵ ,∴
在区间上总不是单调函数,且   7分
由题意知:对于任意的恒成立,
所以,,∴.
(Ⅲ)证明如下: 由(Ⅰ)可知
,即
对一切成立. 10分
,则有,∴.     11分
.    13分
考点:导数的运用
点评:主要是考查了导数在研究函数单调性的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1) 当时,求函数的单调区间;
(2) 当时,函数图象上的点都在所表示的平面区域内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(其中).
(Ⅰ) 当时,求函数的单调区间;
(Ⅱ) 当时,求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底数)
(Ⅰ)若曲线在点处的切线平行于轴,求的值;
(Ⅱ)求函数的极值;
(Ⅲ)当时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
⑴求函数的单调区间;
⑵记函数,当时,上有且只有一个极值点,求实数的取值范围;
⑶记函数,证明:存在一条过原点的直线的图象有两个切点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=(x _ 1)ex _ kx2(k∈R).
(Ⅰ)当k=1时,求函数f(x)的单调区间;
(Ⅱ)当k∈(1/2,1]时,求函数f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的单调区间;
(Ⅱ)求在区间上的最值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,当时,取得极大值;当时,取得极小值.
的值;
处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的导数满足,其中
求曲线在点处的切线方程;
,求函数的极值.

查看答案和解析>>

同步练习册答案