精英家教网 > 高中数学 > 题目详情
13.方程${2^x}={x^2}+\frac{1}{2}$的一个根位于区间(  )
A.$(1,\frac{3}{2})$B.$(\frac{3}{2},2)$C.$(0,\frac{1}{2})$D.$(\frac{1}{2},1)$

分析 方程的根转化为函数的零点,利用零点判定定理求解即可.

解答 解:方程${2^x}={x^2}+\frac{1}{2}$的根,就是f(x)=2x-x2-$\frac{1}{2}$的零点,
由f($\frac{3}{2}$)=$2\sqrt{2}$-$\frac{9}{4}$-$\frac{1}{2}$≈2.828-2.75>0,
f(2)=4-4-$\frac{1}{2}$<0,
可知f($\frac{3}{2}$)f(2)<0.
故选:B.

点评 本题考查零点判定定理的应用,利用函数的零点判定定理求解是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x2≤4},$B=\left\{{\left.x\right|\frac{x-1}{x-2}≤0}\right\}$,则A∩B(  )
A.[-2,2)B.[1,2)C.(-2,1]D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在三棱柱ABC-A1B1C1中,已知$AB=AC=A{A_1}=\sqrt{5},BC=4$,点A1在底面ABC的投影是线段BC的中点O.
(1)证明:在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求三棱柱ABC-A1B1C的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为把中国武汉大学办成开放式大学,今年樱花节武汉大学在其属下的艺术学院和文学院分别招募8名和12名志愿者从事兼职导游工作,将这20志愿者的身高编成如下茎叶图(单位:厘米)若身高在175cm及其以上定义为“高个子”,否则定义为“非高个子”且只有文学院的“高个子”才能担任兼职导游.
(1)根据志愿者的身高茎叶图指出文学院志愿者身高的中位数
(2)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少
(3)若从所有“高个子”中选3名志愿者.用ζ表示所选志愿者中能担任“兼职导游”的人数,试写出ζ的分布列,并求ζ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-5x+6≤0},集合B={x|2x>4},则集合A∩B=(  )
A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|2<x≤3}D.{x|2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.求值:${({\frac{81}{16}})^{-\frac{1}{4}}}+{log_2}({4^3}×{2^4})$=$\frac{32}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在三棱锥S-ABC中,三条棱SA、SB、SC两两互相垂直,且SA=SB=SC=a,M是边BC的中点.
(1)求异面直线SM与AC所成的角的大小;
(2)设SA与平面ABC所成的角为α,二面角S-BC-A的大小为β,分别求cosα,cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知两条不重合的直线m,n和两个不同的平面α,β,若m⊥α,n?β,则下列四个命题:
①若α∥β,则m⊥n;
②若m⊥n,则α∥β;
③若m∥n,则α⊥β;
④若α⊥β,则m∥n;
其中正确的命题个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x-1)ex+1(x>0)
求证:(1)f(x)>0
(2)对?n∈N*,若${x_n}{e^{{x_{n+1}}}}={e^{x_n}}-1$,x1=1,求证:${x_n}>{x_{n+1}}>\frac{1}{{{2^{n+1}}}}$.

查看答案和解析>>

同步练习册答案