精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),且|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2$\sqrt{3}$,则$\overrightarrow{a}$与$\overrightarrow{b}$ 的夹角为$\frac{π}{6}$.

分析 根据平面向量数量积的定义与夹角公式,计算即可.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),且|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2$\sqrt{3}$,
∴$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$-$\overrightarrow{a}$•$\overrightarrow{b}$=0;
设$\overrightarrow{a}$与$\overrightarrow{b}$ 的夹角为θ,
则32-3×2$\sqrt{3}$×cosθ=0,
解得cosθ=$\frac{\sqrt{3}}{2}$;
又θ∈[0,π],
∴θ=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.

点评 本题考查了平面向量数量积的定义与夹角公式的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$|\begin{array}{l}{3sinx}&{-2}\\{2cosx}&{1}\end{array}|$的最大值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,且${a_1}=1,{S_n}={n^2}{a_n}(n∈{N_+})$
(1)试求出S1,S2,S3,S4,并猜想Sn的表达式;
(2)证明你的猜想,并求出an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.空间中两点A(1,-1,2)、B(-1,1,2$\sqrt{2}$+2)之间的距离是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在数列{an}中,前n项和为Sn,${a_n}=(3n-19)•{e^n}$,则当Sn最小时,n的值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若双曲线与椭圆4x2+y2=64有公共的焦点,它们的离心率互为倒数,则双曲线的方程是(  )
A.3y2-x2=36B.x2-3y2=36C.3x2-y2=36D.y2-3x2=36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}sinx,sinx≥cosx\\ cosx,sinx<cosx\end{array}$,下列说法正确的是(  )
A.该函数值域为[-1,1]
B.当且仅当x=2kπ+$\frac{π}{2}$(k∈Z)时,函数取最大值1
C.该函数是以π为最小正周期的周期函数
D.当π+2kπ<x<2kπ+$\frac{3π}{2}$(k∈Z)时,f(x)<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}中,a1=1,an-an-1=n(n≥2,n∈N),设bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n+2}}$+$\frac{1}{{a}_{n+3}}$+…+$\frac{1}{{a}_{2n}}$,若对任意的正整数n,当m∈[1,2]时,不等式m2-mt+$\frac{1}{3}$>bn恒成立,则实数t的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为2$\sqrt{3}$,$\sqrt{3}$c=2asinC,a=2$\sqrt{3}$,则b+c=6.

查看答案和解析>>

同步练习册答案