解:(1)∵PA是⊙O的切线,AB是⊙O的直径,
∴∠PAB=90°,
∵BD平分∠PBA,
∴∠ABD=
∠PBA=
×30°=15°,
∴∠ADB=90°-∠ABD=75°;
(2)∵AB是⊙O的直径,
∴∠PCA=∠ACB=90°;
在Rt△ABC中,∠ABC=30°,
∴∠BAC=60°,
∴∠PAC=∠PAB-∠BAC=30°;
在Rt△PAC中,
∵PA=2,∠PCA=90°,
∴PC=
PA=1;
在Rt△ABP中,
∵∠ABP=30°,∠PAB=90°,
∴PB=2AP=2×2=4,
∴BC=PB-PC=3(cm).
分析:(1)根据切线的性质知:∠PAB=90°,再根据∠PBA的平分线交PA于点D,∠ABC的度数,可得:∠ABD的度数,从而可将∠ADB的度数求出;
(2)在Rt△APC中,根据PA的长和∠PAC的度数,可将PA的长求出,在Rt△ABP中,根据三角函数可将PB的长求出,从而可将BC的长求出.
点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.