精英家教网 > 高中数学 > 题目详情
已知点A(-1,0),B(1,0),若点C(x,y)满足2
(x-1)2+y2
=|x-4|
,则|AC|+|BC|=
 
分析:由题意得
(x-1)2+y2
|x-4|
=
1
2
,即点C(x,y)到点B(1,0)的距离比上到x=4的距离,等于常数
1
2

点C(x,y)在以点B为焦点,以直线x=4为准线的椭圆上,求出a值,利用|AC|+|BC|=2a 求出它的值.
解答:解:由条件 2
(x-1)2+y2
=|x-4|
,可得
(x-1)2+y2
|x-4|
1
2

即点C(x,y)到点B(1,0)的距离比上到x=4的距离,等于常数
1
2
,按照椭圆的第二定义,
点C(x,y)在以点B为焦点,以直线x=4为准线的椭圆上,故 c=1,
c
a
=
1
2
,∴a=2,
|AC|+|BC|=2a=4,
故答案为:4.
点评:本题考查椭圆的第二定义,以及椭圆的简单性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连接BC并延长至D,使得|CD|=|BC|,求AC与OD的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,O为坐标原点,其中an、bn分别为等差数列和等比数列,若P1是线段AB的中点,设等差数列公差为d,等比数列公比为q,当d与q满足条件
 
时,点P1,P2,P3,…,Pn,…共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(1,0),M是平面上的一动点,过M作直线l:x=4的垂线,垂足为N,且|MN|=2|MB|.
(1)求M点的轨迹C的方程;
(2)当M点在C上移动时,|MN|能否成为|MA|与|MB|的等比中项?若能求出M点的坐标,若不能说明理.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A到图形C上每一个点的距离的最小值称为点A到图形C的距离.已知点A(1,0),圆C:x2+2x+y2=0,那么平面内到圆C的距离与到点A的距离之差为1的点的轨迹是(  )

查看答案和解析>>

同步练习册答案