精英家教网 > 高中数学 > 题目详情

【题目】设集合.

1)若集合含有三个元素,且,这样的集合有多少个?所有集合中个元素之和是多少?

2)若集合各含有三个元素,且,这样的集合有多少种配对方式?

【答案】110420 2216.

【解析】

1)直接根据组合的定义即可求出;由这样的集合中每个元素均各有10个,即可得到本题答案;

2)由题,得符合条件的有三类:①若A不含6且不含12,②若A中含6不含12(或含12不含6),③若A中含6且含12,算出各种情况的个数再相加,即可得到本题答案.

1)因为,所以集合A个,在这20个集合中含有元素2的有个,含有其他各元素的均各有10个,所以集合A中元素之和为

2)因为,符合条件的有三类:

①若A不含6且不含12,则A个,符合条件B的有个,这样的对;

②若A中含6不含12(或含12不含6),则A个,满足条件的B个,这样的对;

③若A中含6且含12,则A个,满足条件的B个,这样的.

由分类计数原理,符合条件的共有(对).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,∠BAC90°ABACAA1,且EF分别是BCB1C1中点.

1)求证:A1B∥平面AEC1

2)求直线AF与平面AEC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{}的前n项和为Sn,,且对任意的n∈N*,n≥2都有

(1)若0,,求r的值;

(2)数列{}能否是等比数列?说明理由;

(3)当r=1时,求证:数列{}是等差数列。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

)证明:当时,

)设当时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体的棱长为1,给出下列四个命题:①对角线被平面和平面三等分;②正方体的内切球,与各条棱相切的球,外接球的表面积之比为;(3)以正方体的顶点为顶点的四面体的体积都是;④正方体与以为球心,1为半径的球的公共部分的体积是,其中正确命题的序号为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某赛季甲、乙两位运动员每场比赛得分的茎叶图如图所示.

(1)从甲、乙两人的这5次成绩中各随机抽取一个,求甲的成绩比乙的成绩高的概率;

(2)试用统计学中的平均数、方差知识对甲、乙两位运动员的测试成绩进行分析.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,如果对于定义域内的任意实数,对于给定的非零常数,总存在非零常数,恒有成立,则称函数上的级类增周期函数,周期为,若恒有成立,则称函数上的级类周期函数,周期为.

1)已知函数上的周期为12级类增周期函数,求实数的取值范围;

2)已知级类周期函数,且上的单调递增函数,当时,,求实数的取值范围;

3)是否存在实数,使函数上的周期为级类周期函数,若存在,求出实数的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列命题中,正确命题的序号为 (写出所有正确命题的序号).

函数的最小值为

已知定义在上周期为4的函数满足,则一定为偶函数;

定义在上的函数既是奇函数又是以2为周期的周期函数,则

已知函数,则有极值的必要不充分条件;

已知函数,若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知椭圆的离心率为分别是椭圈的左、右焦点,椭圆的焦点到双曲线渐近线的距离为.

(1)求椭圆的方程;

(2)直线与椭圆交于两点,以线段为直径的圆经过点,且原点到直线的距离为,求直线的方程.

查看答案和解析>>

同步练习册答案