精英家教网 > 高中数学 > 题目详情

【题目】某个比赛安排4名志愿者完成6项工作,每人至少完成一项,每项工作由一人完成,则不同的安排方式有多少种(

A.7200B.4800C.2640D.1560

【答案】D

【解析】

分两类,第一类,4人完成的工作数是3111,第二类,4人完成的工作数是2211,再将工作分组,进行分配即可.

由题意,分两类:

第一类,当4人完成的工作数是3111时,首先将6项工作分成4组,一组3项,

另外三组各1项,共有种不同方式,再分配给4个人共

种不同方式;

第二类,当4人完成的工作数是2211时,首先将6项工作分成4组,两组2项,

另外两组各1项,共有种不同方式,再分配给4个人共

种不同方式;综上,共有1560种不同安排方式.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以原点为极点,以轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为:.

(1)若曲线的参数方程为为参数),求曲线的直角坐标方程和曲线的普通方程;

(2)若曲线的参数方程为为参数),,且曲线与曲线的交点分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在高一某班的元旦文艺晚会中,有这么一个游戏:一盒子内装有6张大小和形状完全相同的卡片,每张卡片上写有一个成语,它们分别为意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,从盒内随机抽取2张卡片,若这2张卡片上的2个成语有相同的字就中奖,则该游戏的中奖率为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数是奇函数.

1)求实数a的值;

2)判断该函数在定义域R上的单调性(不要求写证明过程).

3)若对任意的,不等式恒成立,求实数k的取值范围;

4)设关于x的函数有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)研究函数的极值点;

(2)当p>0时,若对任意的x>0,恒有,求p的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20171018日至1024日,中国共产党第十九次全国代表大会简称党的“十九大”在北京召开一段时间后,某单位就“十九大”精神的领会程度随机抽取100名员工进行问卷调查,调查问卷共有20个问题,每个问题5分,调查结束后,发现这100名员工的成绩都在内,按成绩分成5组:第1,第2,第3,第4,第5,绘制成如图所示的频率分布直方图,已知甲、乙、丙分别在第3,4,5组,现在用分层抽样的方法在第3,4,5组共选取6人对“十九大”精神作深入学习.

求这100人的平均得分同一组数据用该区间的中点值作代表

求第3,4,5组分别选取的作深入学习的人数;

若甲、乙、丙都被选取对“十九大”精神作深入学习,之后要从这6人随机选取2人再全面考查他们对“十九大”精神的领会程度,求甲、乙、丙这3人至多有一人被选取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数满足以下4个条件.

①函数的定义域是,且其图象是一条连续不断的曲线;

②函数不是单调函数;

③函数是偶函数;

④函数恰有2个零点.

1)写出函数的一个解析式;

2)画出所写函数的解析式的简图;

3)证明满足结论③及④.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机生产企业为了解消费者对某款手机的认同情况,通过销售部随机抽取50名购买该款手机的消费者,并发出问卷调查(满分50分),该问卷只有20份给予回复,这20份的评分如下:

47,36,28,48,48,44,50,46,50,37,35,49

38,37,50,36,38,45,29,39

1)完成下面的茎叶图,并求12名男消费者评分的中位数与8名女消费者评分的众数及平均值;

2

3

4

5

满意

不满意

合计

合计

2)若大于40分为满意,否则为不满意,完成上面的列联表,并判断是否有95%的把握认为消费者对该款手机的满意度与性别有关;

3)若从回复的20名消费者中按性别用分层抽样的方法抽取5人,再从这5人中随机抽取2人作进一步调查,求至少有1名女性消费者被抽到的概率

附:

0.05

0.025

0.01

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案