精英家教网 > 高中数学 > 题目详情
16.已知曲线C1:y=ax2上点P处的切线为l1,曲线C2:y=bx3上点A(1,b)处的切线为l2,且l1⊥l2,垂足M(2,2),求a、b的值.

分析 求出直线l1的方程,直线l2的方程,利用交点坐标,联立方程,求出a,t,b的方程组,求解即可.

解答 解:设P(t,at2),y′=ax2=2ax,则l1斜率k1=2at,
∴l1:y-at2=2at(x-t).
y=bx3,可得y′=3bx2
l2斜率k2=3bx2|x=1=3b,
∴l2:y-b=3b(x-1)…(3分)
∵l1与l2交于点M(2,2),
∴$\left\{\begin{array}{l}2-a{t^2}=2at(2-t)\\ 2-b=3b(2-1)\end{array}\right.$∴$\left\{\begin{array}{l}a{t^2}-4at+2=0\\ b=\frac{1}{2}\end{array}\right.$①…(5分)
又l1⊥l2
∴k1•k2=-1,∴at=-$\frac{1}{3}$②…(7分)
由①②得t=10,a=-$\frac{1}{30}$,b=$\frac{1}{2}$…(8分)

点评 本题考查函数的导数曲线的切线方程,抛物线与直线的位置关系的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.定义:记min{x1,x2,…,xn}为x1,x2,…,xn这n个实数中的最小值,记max{x1,x2,…,xn}为x1,x2,…,xn这n个实数中的最大值,例如:min{3,-2,0}=-2.
(1)求证:min{x2+y2,xy}=xy;
(2)已知f(x)=max{|x|,2x+3}(x∈R),求f(x)的最小值;
(3)若H=max{$\frac{1}{{\sqrt{x}}}$,$\frac{x+y}{{\sqrt{xy}}}$,$\frac{1}{{\sqrt{y}}}}$}(x,y∈R+),求H的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在平行四边形ABCD中,P,Q分别是BC和CD的中点.
(1)若AB=2,AD=1,∠BAD=60°,求$\overrightarrow{AB}$•$\overrightarrow{AC}$及cos∠BAC的余弦值;
(2)若$\overrightarrow{AC}$=λ$\overrightarrow{AP}$+$μ\overrightarrow{BQ}$,求λ+μ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)在(0,+∞)内可导,且f(ex)=x+ex,则f(x)在点x=1处的切线方程为2x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C的极坐标方程ρ=2cosθ,直线l的参数方程是$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{5}}{5}t}\\{y=\frac{2\sqrt{5}}{5}t}\end{array}\right.$(t为参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l与y轴的交点是M,N是曲线C上一动点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,长方体ABCD-A1B1C1D1中,D1D=DC=4,AD=2,E为D1C的中点.
(1)求三棱锥D1-ADE的体积.
(2)AC边上是否存在一点M,使得D1A∥平面MDE?若存在,求出AM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x,y为非零实数,代数式$\frac{{x}^{2}}{{y}^{2}}$+$\frac{{y}^{2}}{{x}^{2}}$-8($\frac{x}{y}$+$\frac{y}{x}$)+15的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.y=cos$\frac{x}{3}$(x∈R)的最小正周期是(  )
A.$\frac{π}{2}$B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=9x-a•3x+1+a2(x∈[0,1],a∈R),记f(x)的最大值为g(a).
(Ⅰ)求g(a)解析式;
(Ⅱ)若对于任意t∈[-2,2],任意a∈R,不等式g(a)≥-m2+tm恒成立,求实数m的范围.

查看答案和解析>>

同步练习册答案