精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.

(1)若的坐标为,求的值;

(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

【答案】(1)(2)

【解析】试题分析:(1抛物线的焦点到准线的距离为可得,从而得到抛物线的方程,然后设出切线切线的方程为,由求得,由切点在抛物线上可得到,即为所求。(2)由(1)得到以线段为直径的圆为圆。由题意只需考虑斜率为正数的直线即可,根据几何知识得,故的方程为,由弦长公式可得,又,所以,最后根据可得

试题解析:

(1)由抛物线的焦点到准线的距离为,得

则抛物线的方程为.

设切线的方程为,代入

时,点的横坐标为

时,同理可得.

综上得

(2)由(1)知,

所以以线段为直径的圆为圆

根据对称性,只要探讨斜率为正数的直线即可,

因为为直线与圆的切点,

所以

所以

所以

所以直线的方程为

消去整理得

因为直线与圆相交,所以

,则

所以

所以

,因为,所以

所以

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左,右焦点分别为,线段的中点分别为,且 是面积为4的直角三角形.

1)求该椭圆的离心率和标准方程;

2)过做直线交椭圆于两点,使,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘车补贴标准如下表:

某校研究性学习小组,从汽车市场上随机选取了辆纯电动乘用车,根据其续驶里程(单次充电后能行驶的最大里程)作出了频率与频数的统计表:

(1)求的值;

(2)若从这辆纯电动乘用车中任选3辆,求选到的3辆车续驶里程都不低于180公里的概率;

(3)如果以频率作为概率,若某家庭在某汽车销售公司购买了2辆纯电动乘用车,设该家庭获得的补贴为(单位:万元),求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是正四棱柱的一个截面,此截面与棱交于点 ,其中分别为棱上一点.

(1)证明:平面平面

(2)为线段上一点,若四面体与四棱锥的体积相等,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点C(t,) (t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y﹣4=0与圆C交于点M、N,若OM=ON,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1D与D1C所成的角为(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若有极值0,求实数,并确定该极值为极大值还是极小值;

(2)在(1)的条件下,当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线 .

(Ⅰ)求曲线的普通方程和的直角坐标方程;

(Ⅱ)若相交于两点,设点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且f(x)在(﹣∞,0]上单调递减,则不等式f(lgx)>f(﹣2)的解集是(
A.( ,100)
B.(100,+∞)
C.( ,+∞)
D.(0, )∪(100,+∞)

查看答案和解析>>

同步练习册答案