精英家教网 > 高中数学 > 题目详情
(2013•嘉定区一模)如图,在直三棱柱ABC-A1B1C1中,AB=2,AC=AA1=4,∠ABC=90°.
(1)求三棱柱ABC-A1B1C1的表面积S;
(2)求异面直线A1B与AC所成角的大小(结果用反三角函数表示).
分析:(1)利用S=2S△ABC+S,可求三棱柱ABC-A1B1C1的表面积S;
(2)连接BC1,确定∠BA1C1就是异面直线A1B与AC所成的角(或其补角),在△A1BC1中,利用余弦定理可求结论.
解答:解:(1)在△ABC中,因为AB=2,AC=4,∠ABC=90°,所以BC=2
3
.…(1分)
S△ABC=
1
2
AB×BC=2
3
.…(1分)
所以S=2S△ABC+S=4
3
+(2+2
3
+4)×4=24+12
3
.…(3分)
(2)连接BC1,因为AC∥A1C1,所以∠BA1C1就是异面直线A1B与AC所成的角(或其补角).…(1分)
在△A1BC1中,A1B=2
5
,BC1=2
7
,A1C1=4,…(1分)
由余弦定理可得cos∠BA1C1=
5
10
,…(3分)
所以∠BA1C1=arccos
5
10
.…(1分)
即异面直线A1B与AC所成角的大小为arccos
5
10
.…(1分)
点评:本题考查三棱柱的表面积,考查线线角,解题的关键是正确作出线线角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•嘉定区一模)书架上有3本不同的数学书,2本不同的语文书,2本不同的英语书,将它们任意地排成一排,则左边3本都是数学书的概率为
1
35
1
35
(结果用分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)若双曲线x2-
y2
k
=1
的焦点到渐近线的距离为2
2
,则实数k的值是
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)如图所示的算法框图,若输出S的值是90,那么在判断框(1)处应填写的条件是
k≤8
k≤8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)如图,在平面直角坐标系xOy中,椭圆
x2
a2
+
y2
b2
=1(a>b>0)被围于由4条直线x=±a,y=±b所围成的矩形ABCD内,任取椭圆上一点P,若
OP
=m•
OA
+n•
OB
(m、n∈R),则m、n满足的一个等式是
m2+n2=
1
2
m2+n2=
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.数列{bn}的前n项和为Tn,满足Tn=1-bn
(1)求数列{an}的通项公式;
(2)写出一个正整数m,使得
1
am+9
是数列{bn}的项;
(3)设数列{cn}的通项公式为cn=
an
an+t
,问:是否存在正整数t和k(k≥3),使得c1,c2,ck成等差数列?若存在,请求出所有符合条件的有序整数对(t,k);若不存在,请说明理由.

查看答案和解析>>

同步练习册答案