精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象在处的切线为.为自然对数的底数).

1)求的值;

2)当时,求证:

3)若对任意的恒成立,求实数的取值范围.

【答案】12)见解析(3

【解析】

1)因为,可得,根据函数的图象在处的切线为,即可求得答案;

2)由(1)可知,.,由,得,当时,单调递减;当时,单调递增,即可求得答案;

3)因为对任意的恒成立,可得 对任意的恒成立,令,结合已知,即可求得答案.

1

.

函数的图象在处的切线为

.

解得

2)由(1)可知,.

,由,得

时,单调递减;

时,单调递增.

.

3对任意的恒成立

对任意的恒成立,

.

由(2)可知当时,恒成立,

,得

,得.

的增区间为,减区间为

.

实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)证明:函数在区间上存在唯一的极大值点;

(Ⅲ)证明:函数有且仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年4月25日-27日,北京召开第二届“一带一路”国际高峰论坛,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这三个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数为 ( )

A. 198B. 268C. 306D. 378

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形中,,点边的中点,将沿折起,使平面平面,连接,得到如图2所示的几何体.

1)求证:平面

2)若,且与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1是由矩形ADEBRtABC和菱形BFGC组成的一个平面图形,其中AB=1BE=BF=2,∠FBC=60°,将其沿ABBC折起使得BEBF重合,连结DG,如图2.

1)证明:图2中的ACGD四点共面,且平面ABC⊥平面BCGE

2)求图2中的二面角BCGA的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与直线相切,的导函数,且.

1)求

2)函数的图象与曲线关于轴对称,若直线与函数的图象有两个不同的交点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2018·石家庄一检]已知函数

(1)若,求函数的图像在点处的切线方程;

(2)若函数有两个极值点,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且与直线l相切.

1)求动圆圆心的轨迹C的方程;

2)过F作斜率为的直线mC交于两点AB,过AB分别作C的切线,两切线交点为P,证明:点P始终在直线l上且.

查看答案和解析>>

同步练习册答案