【题目】已知椭圆的一个焦点为,离心率为.
(1)求椭圆的标准方程;
(2)若动点为椭圆外一点,且点到椭圆的两条切线相互垂直,求点的轨迹方程.
【答案】(1);(2).
【解析】
试题分析:(1)利用题中条件求出的值,然后根据离心率求出的值,最后根据、、三者的关系求出的值,从而确定椭圆的标准方程;(2)分两种情况进行计算:第一种是在从点所引的两条切线的斜率都存在的前提下,设两条切线的斜率分别为、,并由两条切线的垂直关系得到,并设从点所引的直线方程为,将此直线的方程与椭圆的方程联立得到关于的一元二次方程,利用得到有关的一元二次方程,最后利用以及韦达定理得到点的轨迹方程;第二种情况是两条切线与坐标轴垂直的情况下求出点的坐标,并验证点是否在第一种情况下所得到的轨迹上,从而得到点的轨迹方程.
试题解析:(1)由题意知,且有,即,解得,
因此椭圆的标准方程为;
(2)①设从点所引的直线的方程为,即,
当从点所引的椭圆的两条切线的斜率都存在时,分别设为、,则,
将直线的方程代入椭圆的方程并化简得,
,
化简得,即,
则、是关于的一元二次方程的两根,则,
化简得;
②当从点所引的两条切线均与坐标轴垂直,则的坐标为,此时点也在圆上.
综上所述,点的轨迹方程为.
科目:高中数学 来源: 题型:
【题目】通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:
男 | 女 | 总计 | ||
读营养说明 | 16 | 28 | 44 | |
不读营养说明 | 20 | 8 | 28 | |
总计 | 36 | 36 | 72 |
(1)根据以上列联表判断,能否在犯错误的概率不超过0.005的前提下认为性别和是否看营养说明有关系呢?
(2)从被询问的28名不读营养说明的大学生中,随机抽取2名学生,求抽到女生人数
的分布列及数学期望.
附:
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率低于,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A={(x1 , x2 , x3 , x4 , x5)|xi∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为( )
A.60
B.90
C.120
D.130
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.
(1)证明:CF⊥平面ADF;
(2)求二面角D﹣AF﹣E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(c为常数),且f(1)=0.
(1)求c的值;
(2)证明函数f(x)在[0,2]上是单调递增函数;
(3)已知函数g(x)=f(ex),判断函数g(x)的奇偶性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论中:
①定义在R上的函数f(x)在区间(-∞,0]上是增函数,在区间[0,+∞)上也是增函数,则函数f(x)在R上是增函数;②若f(2)=f(-2),则函数f(x)不是奇函数;③函数y=x-0.5是(0,1)上的减函数;④对应法则和值域相同的函数的定义域也相同;⑤若x0是二次函数y=f(x)的零点,且m<x0<n,那么f(m)f(n)<0一定成立.
写出上述所有正确结论的序号:_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.
(1)求证:AB⊥CD;
(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲与乙午觉醒来后,发现自己的手表因故停止转动,于是他们想借助收音机,利用电台整点报时确认时间.
(1)求甲等待的时间不多于10分钟的概率;
(2)求甲比乙多等待10分钟以上的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com