【题目】已知在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(Ⅰ)求证:D1E⊥A1D;
(Ⅱ)在棱AB上是否存在点E使得AD1与平面D1EC成的角为?若存在,求出AE的长,若不存在,说明理由.
【答案】(Ⅰ)证明见解析;(2).
【解析】试题分析:
(Ⅰ)要证,由正方形有,因此要证平面,而要证此线面垂直,只要证,这由长方体的性质可得;(Ⅱ)假设存在,以D为原点,建立空间直角坐标系,写出各点坐标,并设,用向量法求出AD1与平面D1EC成的角,从而求出,若能求出,说明存在,若不能求出,说明不存在.
试题解析:
(Ⅰ)证明:∵AE⊥平面AA1DD1,A1D平面AA1DD1,
∴AE⊥A1D,
∵在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,
∴A1D⊥AD1,
∵AE∩AD1=A,∴A1D⊥平面AED1,
∵D1E平面AED1,∴A1D⊥D1E.
(Ⅱ)解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设棱AB上存在点E(1,t,0),(0≤t≤2),使得AD1与平面D1EC成的角为,
A(1,0,0),D1(0,0,1),C(0,2,0),
=(﹣1,0,1),=(0,﹣2,1),=(1,t﹣2,0),
设平面D1EC的法向量为=(x,y,z),
则,取y=1,得=(t﹣1,1,2),
∴,
整理,得t2﹣10t+12=0,
解得或(舍),
∴在棱AB上存在点E使得AD1与平面D1EC成的角为,AE=.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,直线的参数方程为,曲线的极坐标方程为.
(1)写出直线的直角坐标方程和曲线的普通方程;
(2)求直线与曲线的交点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列命题:
①意味着每增加一个单位,平均增加8个单位
②投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件
③互斥事件不一定是对立事件,但对立事件一定是互斥事件
④在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型
其中正确的命题有__________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设P是圆上的动点,点D是P在x轴上的投影,M为线段PD上一点,且,
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为的直线被轨迹C所截线段的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1, (t为参数).
(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;
(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的 倍,得到曲线 .设P(﹣1,1),曲线C2与 交于A,B两点,求|PA|+|PB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设关于的一元二次方程.
(1)若从, , , 四个数中任取的一个数, 是从, , 三个数中任取的一个数,求上述方程有实根的概率;
(2)若是从区间上任取的一个数, 是从区间上任取的一个数,求上述方程有实根的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com