精英家教网 > 高中数学 > 题目详情
已知函数f(x)满足对任意x,y∈R,都有f(x+y)=f(x)f(y)-f(x)-f(y)+2成立,且x>0时,f(x)>2.
(1)求f(0)的值,并证明:当x<0时,1<f(x)<2;
(2)判断f(x)的单调性并加以证明.
考点:抽象函数及其应用,函数单调性的性质
专题:计算题,证明题,函数的性质及应用
分析:(1)令y=0得,f(x)=f(x)f(0)-f(x)-f(0)+2,[f(x)-1][f(0)-2]=0;从而解得f(0)=2;再令x+y=0,y=-x,从而证明x<0时,1<f(x)<2;
2)先判断f(x)是单调增函数,再由定义法证明函数的单调性.
解答: 解:(1)令y=0得,f(x)=f(x)f(0)-f(x)-f(0)+2,
即[f(x)-1][f(0)-2]=0;
又∵x>0时,f(x)>2;
∴f(0)-2=0,即f(0)=2;
∵f(x+y)=f(x)f(y)-f(x)-f(y)+2=[f(x)-1][f(y)-1]+1,
∴f(x+y)-1=[f(x)-1][f(y)-1],
设x+y=0,y=-x,
f(0)-1=[f(x)-1][f(-x)-1]=1,
又∵x>0时,f(x)>2,
∴f(x)-1=
1
f(-x)-1
>1,
即0<f(-x)-1<1,故,1<f(-x)<2,
故x<0时,1<f(x)<2;
2)f(x)是单调递增函数,证明如下,
任取x1>x2,x1-x2>0,f(x1-x2)>2,f(x2)>1;
f(x1)-f(x2)=f(x1-x2+x2)-f(x2
=f(x1-x2)f(x2)-f(x1-x2)-f(x2)+2-f(x2
=f(x1-x2)[f(x2)-1]-2[f(x2)-1]
=[f(x1-x2)-2][f(x2)-1]>0
故f(x1)>f(x2),
则f(x)是单调递增函数.
点评:本题考查了抽象函数的值域的求法及函数的单调性的判断与证明,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某年级有1000名学生,现从中抽取100人作为样本,采用系统抽样的方法,将全体学生按照1~1000编号,并按照编号顺序平均分成100组(1~10号,11~20号,…,991~1000号).若从第1组抽出的编号为6,则从第10组抽出的编号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a+x2=2012,b+x2=2013,c+x2=2015且abc=8.求 
a
bc
+
b
ac
+
c
ab
-
1
a
-
1
b
-
1
c
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sinAsinB<cosAcosB,则这个三角形的形状是(  )
A、锐角三角形
B、钝角三角形
C、直角三角形
D、等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax2-lnx在(0,1]上存在唯一零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求过点A(-2,1)B(2,3),且在两坐标上截距之和为4的圆的方程
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(cos25°,sin25°),
b
=(cos20°,sin20°),若
c
=
a
+t
b
(t∈R)
,则|
c
|的最小值为(  )
A、
2
B、1
C、
2
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知动点M(x,y),点A(0,1),B(0,-1),D(1,0),点N与点M关于直线y=x对称,且
AN
BN
=
1
2
x2
.直线l是过点D的任意一条直线.
(1)求动点M所在曲线C的轨迹方程;
(2)设直线l与曲线C交于G、H两点,且|GH|=
3
2
2
,求直线l的方程;
(3)(理科)若直线l与曲线C交于G、H两点,与线段AB交于点P(点P不同于点O、A、B),直线GB与直线HA交于点Q,求证:
OP
OQ
是定值.
(文科) 设直线l与曲线C交于G、H两点,求以|GH|的长为直径且经过坐标原点O的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α+β=
3
,sinα+cosβ=
3
+1
4
,求sin(α-β)

查看答案和解析>>

同步练习册答案