精英家教网 > 高中数学 > 题目详情

【题目】某小学要求下午放学后的1700-1800接学生回家,该学生家长从下班后到达学校(随机)的时间为1730-1830,则该学生家长从下班后,在学校规定时间内接到孩子的概率为(

A.B.C.D.

【答案】A

【解析】

根据题意,设学生出来的时间为,家长到达学校的时间为,转化成线性规划问题,利用面积型几何概型求概率,即可求得概率.

解:根据题意,设学生出来的时间为,家长到达学校的时间为

学生出来的时间为1700-1800,看作

家长到学校的时间为1730-1830

要使得家长从下班后,在学校规定时间内接到孩子,则需要

则相当于,即求的概率,

如图所示:

约束条件对应的可行域面积为:1

则可行域中的面积为阴影部分面积:

所以对应的概率为:

即学生家长从下班后,在学校规定时间内接到孩子的概率为:.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】国际奥委会将于2017915日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

支持

不支持

合计

年龄不大于50

80

年龄大于50

10

合计

70

100

1)根据已知数据,把表格数据填写完整;

2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运有关?

3)已知在被调查的年龄大于50岁的支持者中有6名女性,其中2名是女教师.现从这6名女性中随机抽取2名,求恰有1名女教师的概率.

附:

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1求函数的单调区间

2探究:是否存在实数使得恒成立若存在求出的值若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左、右顶点为,上、下顶点为,记四边形的内切圆为.

(1)求圆的标准方程;

(2)已知圆的一条不与坐标轴平行的切线交椭圆PM两点.

(i)求证:

(ii)试探究是否为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( .(取

A.16B.17C.24D.25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知圆的参数方程是为参数).为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程是,射线与圆的交点为两点,与直线的交点为.

1)求圆的极坐标方程;

2)求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知圆的参数方程是为参数).为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程是,射线与圆的交点为两点,与直线的交点为.

1)求圆的极坐标方程;

2)求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,侧面⊥底面,底面为直角梯形,//的中点.

(Ⅰ)求证:PA//平面BEF;

(Ⅱ)若PCAB所成角为,求的长;

(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年全球爆发新冠肺炎,人感染了新冠肺炎病毒后常见的呼吸道症状有:发热、咳嗽、气促和呼吸困难等,严重时会危及生命.随着疫情的发展,自202025日起,武汉大面积的爆发新冠肺炎,政府为了及时收治轻症感染的群众,逐步建立起了14家方舱医院,其中武汉体育中心方舱医院从212日开舱至38日闭仓,累计收治轻症患者1056人.据部分统计该方舱医院从226日至32日轻症患者治愈出仓人数的频数表与散点图如下:

日期

2.26

2.27

2.28

2.29

3.1

3.2

序号

1

2

3

4

5

6

出仓人数

3

8

17

31

68

168

根据散点图和表中数据,某研究人员对出仓人数与日期序号进行了拟合分析.从散点图观察可得,研究人员分别用两种函数①分析其拟合效果.其相关指数可以判断拟合效果,R2越大拟合效果越好.已知的相关指数为

1)试根据相关指数判断.上述两类函数,哪一类函数的拟合效果更好?(注:相关系数与相关指数R2满足,参考数据表中

2根据(1)中结论,求拟合效果更好的函数解析式;(结果保留小数点后三位)

33日实际总出仓人数为216人,按①中的回归模型计算,差距有多少人?

(附:对于一组数据,其回归直线为

相关系数

参考数据:

3.5

49.17

15.17

3.13

894.83

19666.83

10.55

13.56

3957083

查看答案和解析>>

同步练习册答案