精英家教网 > 高中数学 > 题目详情
若f(x)=ex+ln(x+1)(其中常数e为自然对数的底数),则f′(0)=
2
2
分析:运用导数的加法法则对已知函数进行求导,然后在导函数中取x=0进行计算.
解答:解:由f(x)=ex+ln(x+1),得f(x)=ex+
1
x+1
(x+1)
=ex+
1
x+1

所以,f(0)=e0+
1
0+1
=2

故答案为2.
点评:本题考查了导数的加法法则,考查了基本初等函数的导数公式,题目中还涉及简单的复合函数求导问题,解答此题的关键是对基本初等函数导数公式的记忆,此题是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex,直线l的方程为y=kx+b.
(1)求过函数图象上的任一点P(t,f(t))的切线方程;
(2)若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;
(3)若f(x)≥kx+b对任意x∈[0,+∞)成立,求实数k、b应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax(a∈R).
(Ⅰ) 写出函数y=f(x)的图象恒过的定点坐标;
(Ⅱ)直线L为函数y=φ(x)的图象上任意一点P(x0,y0)处的切线(P为切点),如果函数y=φ(x)图象上所有的点(点P除外)总在直线L的同侧,则称函数y=φ(x)为“单侧函数”.
(i)当a=
1
2
判断函数y=f(x)是否为“单侧函数”,若是,请加以证明,若不是,请说明理由.
(i i)求证:当x∈(-2,+∞)时,ex+
1
2
x≥ln(
1
2
x+1)+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+ax,g(x)=exlnx.(e≈2.71828)
(I)设曲线y=f(x)在点(1,f(1))x=1处的切线为l,若l与圆(x-1)2+y2=
12
相切,求a的值;
(II)若对于任意实数x≥0,f(x)>0恒成立,试确定实数a的取值范围;
(III)当a=-1时,是否存在实数x0∈[1,e],使曲线C:y=g(x)-f(x)在点x=x0处的切线与Y轴垂直?若存在,求出x0的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•江门模拟)已知函数f(x)=ex(ax+b),曲线y=f(x)经过点P(0,2),且在点P处的切线为l:y=4x+2.
(1)求常数a,b的值;
(2)求证:曲线y=f(x)和直线l只有一个公共点;
(3)是否存在常数k,使得x∈[-2,-1],f(x)≥k(4x+2)恒成立?若存在,求常数k的取值范围;若不存在,简要说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案