精英家教网 > 高中数学 > 题目详情

(本题满分12分)
求焦点为(-5,0)和(5,0),且一条渐近线为的双曲线的方程.

解析试题分析:设双曲线的方程为,………………2分
其渐近线为,………………………………………………….4分
现已知双曲线的一条渐近线为,得,…….6分
又双曲线中,……………………………………………8分
解得,……………………………………………………………..10分
∴双曲线的方程为……………………………..12分
考点:双曲线方程及性质
点评:焦点在x轴时渐近线为,焦点在y轴时渐近线为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知椭圆的离心率为,椭圆短轴长为
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于两点. ①若线段中点的横坐标为,求斜率的值;②若点,求证:为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
(1)求直线被双曲线截得的弦长;
(2)求过定点的直线被双曲线截得的弦中点轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如果两个椭圆的离心率相等,那么就称这两个椭圆相似.已知椭圆与椭圆相似,且椭圆的一个短轴端点是抛物线的焦点.
(Ⅰ)试求椭圆的标准方程;
(Ⅱ)设椭圆的中心在原点,对称轴在坐标轴上,直线与椭圆交于两点,且与椭圆交于两点.若线段与线段的中点重合,试判断椭圆与椭圆是否为相似椭圆?并证明你的判断.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
设点P是圆x2 +y2 =4上任意一点,由点P向x轴作垂线PP0,垂足为Po,且
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)设直线:y=kx+m(m≠0)与(Ⅰ)中的轨迹C交于不同的两点A,B.
(1)若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围;
(2)若以AB为直径的圆过曲线C与x轴正半轴的交点Q,求证:直线过定点(Q点除外),并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的焦点坐标为,且短轴一顶点B满足
(Ⅰ) 求椭圆的方程;
(Ⅱ)过的直线l与椭圆交于不同的两点M、N,则△MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知椭圆,其左准线为,右准线为,抛物线以坐标原点为顶点,为准线,两点.
(1)求抛物线的标准方程;
(2)求线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分) 如图,是离心率为的椭圆,
()的左、右焦点,直线将线段分成两段,其长度之比为1 : 3.设上的两个动点,线段的中点在直线上,线段的中垂线与交于两点.

(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点,使以为直径的圆经过点,若存在,求出点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别是椭圆+=1()的左、右焦点,是椭圆的上顶点,是直线与椭圆的另一个交点,=60°.
(1)求椭圆的离心率;
(2)已知△的面积为40,求a, b 的值.

查看答案和解析>>

同步练习册答案