分析 先求出命题p,q成立的等价条件,利用p∨q为真命题,p∧q为假命题,确定实数k的取值范围
解答 解:y=ln(x2-kx+2)的定义域为R,
∴x2-kx+2>0恒成立,
∴△=k2-8<0,解的-2$\sqrt{2}$<k<2$\sqrt{2}$,
命题q:x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,
∴$\left\{\begin{array}{l}{x+y=a+b}\\{xy=cd}\end{array}\right.$,
∴$\frac{(a+b)^{2}}{cd}$=$\frac{(x+y)^{2}}{xy}$=$\frac{y}{x}$+$\frac{y}{x}$+2≥4,当且仅当x=y取等号,
∵$\frac{(a+b)^{2}}{cd}$≥k+1恒成立,
∴4≥k+1,
∴k≤3,
∵如果命题p∨q为真命题,p∧q为假命题
∴p、q一真一假
①p真q假,则$\left\{\begin{array}{l}{-2\sqrt{2}<k<2\sqrt{2}}\\{k>3}\end{array}\right.$,那么k的取值范围:φ
②p假q真,则$\left\{\begin{array}{l}{k≤-2\sqrt{2},或k≥2\sqrt{2}}\\{k≤3}\end{array}\right.$,那么k的取值范围:k≤-2$\sqrt{2}$或2$\sqrt{2}$≤a≤3,
故k≤-2$\sqrt{2}$或2$\sqrt{2}$≤a≤3.
点评 本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | A={直角坐标平面上的点},B={(x,y)|x∈R,y∈R},对应法则是:A中的点与B中的(x,y)对应 | |
B. | A={平面内的圆},B={平面内的三角形},对应法则是:作圆的内接三角形 | |
C. | A=N,B={0,1},对应法则是:除以2的余数 | |
D. | A={0,1,2},B={4,1,0},对应法则是f:x→y=x2. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | p1,p3 | B. | p1,p4 | C. | p2,p3 | D. | p2,p4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com