精英家教网 > 高中数学 > 题目详情

【题目】某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部

竞选.

)设所选3人中女生人数为,求的分布列及数学期望;

)在男生甲被选中的情况下,求女生乙也被选中的概率.

【答案】

【解析】

(I)先确定ξ得可能取值为 0,1,2,然后求出每一个值对应的概率.列出分布列,求出数学期望.

(II)本小题的关键是计算出男生甲被选中的种数为,女生乙也被选中的 种数为.

Iξ得可能取值为 0,1,2

由题意P(ξ=0)=,

P(ξ=1)=,

P(ξ="2)="…………3

∴ξ的分布列、期望分别为:

ξ

0

1

2

p




Eξ=0×+1×+2 ×=1 …………6

II)设在男生甲被选中的情况下,女生乙也被选中的事件为C

男生甲被选中的种数为,男生甲被选中,女生乙也被选中的 种数为

∴P(C)=…………11

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地为了了解地区100000户家庭的用电情况,采用分层抽样的方法抽取了500户家庭的月均用电量,并根据这500户家庭的月均用电量画出频率分布直方图(如图),则该地区100000户家庭中月均用电度数在[70,80]的家庭大约有户.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2﹣a|x﹣1|+b(a>0,b>﹣1)
(1)若b=0,a>2,求f(x)在区间[0,2]内的最小值m(a);
(2)若f(x)在区间[0,2]内不同的零点恰有两个,且落在区间[0,1),(1,2]内各一个,求a﹣b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABO﹣A1B1O1中,侧面AOO1A1与侧面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1=

(1)证明:AB1⊥BO1
(2)求直线AO1与平面AOB1所成的角的正切值;
(3)求二面角O﹣AB1﹣O1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣lnx(a∈R)
(1)当a=1时,求函数y=f(x)的单调区间;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范围;
(3)若a= ,证明:ex1f(x)≥x.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABO﹣A1B1O1中,侧面AOO1A1与侧面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1=

(1)证明:AB1⊥BO1
(2)求直线AO1与平面AOB1所成的角的正切值;
(3)求二面角O﹣AB1﹣O1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣lnx(a∈R)
(1)当a=1时,求函数y=f(x)的单调区间;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范围;
(3)若a= ,证明:ex1f(x)≥x.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinxcosx﹣ x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)当x∈[0, ]时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是线段EF的中点.

(1)求证AM∥平面BDE;
(2)求二面角A﹣DF﹣B的大小;
(3)试在线段AC上一点P,使得PF与CD所成的角是60°.

查看答案和解析>>

同步练习册答案