精英家教网 > 高中数学 > 题目详情
对任意的实数x恒有loga(sinx+cosx)2≥-2,则实数a的取值范围是
 
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:令t=(sinx+cosx)2=1+sin2x,由三角函数的知识可知t∈(0,2],由对数函数的单调性结合分类讨论可得.
解答: 解:令t=(sinx+cosx)2=1+sin2x,
由三角函数的知识可知t∈(0,2],
当a>1时,由对数函数的单调性可知loga(sinx+cosx)2无最小值,故不合题意;
当0<a<1时,对数函数的单调性可知loga(sinx+cosx)2有最小值loga2,
只需loga2≥-2即可,解得0<a≤
2
2

综上可得实数a的取值范围为:(0,
2
2
]

故答案为:(0,
2
2
]
点评:本题考查三角函数公式,涉及对数函数的单调性和恒成立问题,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a=ln0.3,b=e0.3,c=0.3e(e为无理数,e≈2.71),则a,b,c的大小关系是(  )
A、a<b<c
B、c<a<b
C、a<c<b
D、b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-x2-2x+3,x∈[-4,5]的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合A={x|x≤-2或x≥5},B={x|x≤2}.求
(Ⅰ)∁U(A∪B);
(Ⅱ)记∁U(A∪B)=D,C={x|2a-3≤x≤-a},且C∩D=C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a3=5,a4-2a2=3,又等比数列{bn}中,b1=3且公比q=3.
(1)求数列{an},{bn}的通项公式;
(2)若cn=an+bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,设命题p:函数f(x)=ax是R上的单调递减函数;命题q:函数g(x)=lg(2ax2+2ax+1)的定义域为R.若“p∨q”是真命题,“p∧q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(a+1)lnx+ax2+1.
(1)讨论函数f(x)的单调性;
(2)设a<-1,若对任意x1、x2恒有|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+a
bx-c
(b,c∈N+).若方程f(x)=x的根为0和2,且f(-2)<-
1
2

(1)求函数f(x)的解析式;
(2)已知各项均不为零的数列{an}满足:4Snf(
1
an
)=1(Sn为该数列前n项和),求该数列的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2+4x+5
+
x2-4x+8
的最小值为
 

查看答案和解析>>

同步练习册答案